953 resultados para chaotic maps


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we addressed the issue of somatosensory representation and plasticity in a nonmammalian species, the barn owl. Multiunit mapping techniques were used to examine the representation of the specialized receptor surface of the claw in the anterior Wulst. We found dual somatotopic mirror image representations of the skin surface of the contralateral claw. In addition, we examined both representations 2 weeks after denervation of the distal skin surface of a single digit. In both representations, the denervated digital representation became responsive to stimulation of the adjacent, mutually functional, digit. The mutability and multiple representations indicates that the Wulst provides the owl with sensory processing capabilities analogous to those in mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the sequences of round-off errors of the orbits of a discretized planar rotation, from a probabilistic angle. It was shown [Bosio & Vivaldi, 2000] that for a dense set of parameters, the discretized map can be embedded into an expanding p-adic dynamical system, which serves as a source of deterministic randomness. For each parameter value, these systems can generate infinitely many distinct pseudo-random sequences over a finite alphabet, whose average period is conjectured to grow exponentially with the bit-length of the initial condition (the seed). We study some properties of these symbolic sequences, deriving a central limit theorem for the deviations between round-off and exact orbits, and obtain bounds concerning repetitions of words. We also explore some asymptotic problems computationally, verifying, among other things, that the occurrence of words of a given length is consistent with that of an abstract Bernoulli sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo investiga se a política de distribuição de resultados seria capaz de alterar os preços das ações de uma empresa. O objetivo deste trabalho é discutir os impactos do pagamento de proventos sobre os preços das ações, na data ex direito, de empresas maduras e de empresas em expansão, considerando-se ainda o efeito da classe da ação (ordinária ou preferencial) sobre os resultados. Para tal, adotou-se a metodologia de dados em painel, segmentando a amostra a partir dos Mapas Auto-organizáveis de Kohonen. Os resultados revelam que a estratégia de curto prazo de comprar ações na última data com, vender na primeira data ex e embolsar os dividendos é capaz de gerar perdas de capital que superam em até quatro vezes o ganho líquido decorrente do provento embolsado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincareacute return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing delta(1). However, for higher values of delta(1) the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter zeta) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we investigate the population dynamics of cooperative hunting extending the McCann and Yodzis model for a three-species food chain system with a predator, a prey, and a resource species. The new model considers that a given fraction sigma of predators cooperates in prey's hunting, while the rest of the population 1-sigma hunts without cooperation. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of the kneading sequences associated with one-dimensional maps that reproduce significant aspects of the dynamics of the species under several degrees of cooperative hunting. Our model also allows us to investigate the so-called deterministic extinction via chaotic crisis and transient chaos in the framework of cooperative hunting. The symbolic sequences allow us to identify a critical boundary in the parameter spaces (K, C-0) and (K, sigma) which separates two scenarios: (i) all-species coexistence and (ii) predator's extinction via chaotic crisis. We show that the crisis value of the carrying capacity K-c decreases at increasing sigma, indicating that predator's populations with high degree of cooperative hunting are more sensitive to the chaotic crises. We also show that the control method of Dhamala and Lai [Phys. Rev. E 59, 1646 (1999)] can sustain the chaotic behavior after the crisis for systems with cooperative hunting. We finally analyze and quantify the inner structure of the target regions obtained with this control method for wider parameter values beyond the crisis, showing a power law dependence of the extinction transients on such critical parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instituto Politécnico do Porto. Instituto Superior de Contabilidade e Administração do Porto

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the Lorenz links generated by renormalizable Lorenz maps with reducible kneading invariant (K(f)(-), = K(f)(+)) = (X, Y) * (S, W) in terms of the links corresponding to each factor. This gives one new kind of operation that permits us to generate new knots and links from the ones corresponding to the factors of the *-product. Using this result we obtain explicit formulas for the genus and the braid index of this renormalizable Lorenz knots and links. Then we obtain explicit formulas for sequences of these invariants, associated to sequences of renormalizable Lorenz maps with kneading invariant (X, Y) * (S,W)*(n), concluding that both grow exponentially. This is specially relevant, since it is known that topological entropy is constant on the archipelagoes of renormalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we define and investigate generalized Richards' growth models with strong and weak Allee effects and no Allee effect. We prove the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, depending on the implicit conditions, which involve the several parameters considered in the models. New classes of functions describing the existence or not of Allee effect are introduced, a new dynamical approach to Richards' populational growth equation is established. These families of generalized Richards' functions are proportional to the right hand side of the generalized Richards' growth models proposed. Subclasses of strong and weak Allee functions and functions with no Allee effect are characterized. The study of their bifurcation structure is presented in detail, this analysis is done based on the configurations of bifurcation curves and symbolic dynamics techniques. Generically, the dynamics of these functions are classified in the following types: extinction, semi-stability, stability, period doubling, chaos, chaotic semistability and essential extinction. We obtain conditions on the parameter plane for the existence of a weak Allee effect region related to the appearance of cusp points. To support our results, we present fold and flip bifurcations curves and numerical simulations of several bifurcation diagrams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In memory of our beloved Professor José Rodrigues Santos de Sousa Ramos (1948-2007), who João Cabral, one of the authors of this paper, had the honor of being his student between 2000 and 2006, we wrote this paper following the research by experimentation, using the new technologies to capture a new insight about a problem, as him so much love to do it. His passion was to create new relations between different fields of mathematics. He was a builder of bridges of knowledge, encouraging the birth of new ways to understand this science. One of the areas that Sousa Ramos researched was the iteration of maps and the description of its behavior, using the symbolic dynamics. So, in this issue of this journal, honoring his memory, we use experimental results to find some stable regions of a specific family of real rational maps, the ones that he worked with João Cabral. In this paper we describe a parameter space (a,b) to the real rational maps fa,b(x) = (x2 −a)/(x2 −b), using some tools of dynamical systems, as the study of the critical point orbit and Lyapunov exponents. We give some results regarding the stability of these family of maps when we iterate it, specially the ones connected to the order 3 of iteration. We hope that our results would help to understand better the behavior of these maps, preparing the ground to a more efficient use of the Kneading Theory on these family of maps, using symbolic dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microarray allow to monitoring simultaneously thousands of genes, where the abundance of the transcripts under a same experimental condition at the same time can be quantified. Among various available array technologies, double channel cDNA microarray experiments have arisen in numerous technical protocols associated to genomic studies, which is the focus of this work. Microarray experiments involve many steps and each one can affect the quality of raw data. Background correction and normalization are preprocessing techniques to clean and correct the raw data when undesirable fluctuations arise from technical factors. Several recent studies showed that there is no preprocessing strategy that outperforms others in all circumstances and thus it seems difficult to provide general recommendations. In this work, it is proposed to use exploratory techniques to visualize the effects of preprocessing methods on statistical analysis of cancer two-channel microarray data sets, where the cancer types (classes) are known. For selecting differential expressed genes the arrow plot was used and the graph of profiles resultant from the correspondence analysis for visualizing the results. It was used 6 background methods and 6 normalization methods, performing 36 pre-processing methods and it was analyzed in a published cDNA microarray database (Liver) available at http://genome-www5.stanford.edu/ which microarrays were already classified by cancer type. All statistical analyses were performed using the R statistical software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is devoted to the synchronization of a dynamical system defined by two different coupling versions of two identical piecewise linear bimodal maps. We consider both local and global studies, using different tools as natural transversal Lyapunov exponent, Lyapunov functions, eigenvalues and eigenvectors and numerical simulations. We obtain theoretical results for the existence of synchronization on coupling parameter range. We characterize the synchronization manifold as an attractor and measure the synchronization speed. In one coupling version, we give a necessary and sufficient condition for the synchronization. We study the basins of synchronization and show that, depending upon the type of coupling, they can have very different shapes and are not necessarily constituted by the whole phase space; in some cases, they can be riddled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis submitted for assessment with a view to obtaining the degree of Doctor in History and Civilisation from the European University Institute

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dynamical approach to study the behaviour of generalized populational growth models from Bets(p, 2) densities, with strong Allee effect, is presented. The dynamical analysis of the respective unimodal maps is performed using symbolic dynamics techniques. The complexity of the correspondent discrete dynamical systems is measured in terms of topological entropy. Different populational dynamics regimes are obtained when the intrinsic growth rates are modified: extinction, bistability, chaotic semistability and essential extinction.