791 resultados para change strategies
Resumo:
Accounting has been viewed, especially through the lens of the recent managerial reforms, as a neutral technology that, in the hands of rational managers, can support effective and efficient decision making. However, the introduction of new accounting practices can be framed in a variety of ways, from value-neutral procedures to ideologically-charged instruments. Focusing on financial accounting, budgeting and performance management changes in the UK central government, and through extensive textual analysis and interviews in three government departments, this paper investigates: how accounting changes are discussed and introduced at the political level through the use of global discourses; and what strategies organisational actors subsequently use to talk about and legitimate such discourses at different organisational levels. The results shows that in political discussions there is a consistency between the discourses (largely NPM) and the accounting-related changes that took place. The research suggests that a cocktail of legitimation strategies was used by organisational actors to construct a sense of the changes, with authorisation, often in combination with, at the very least, rationalisation strategies most widely utilised. While previous literature posits that different actors tend to use the same rhetorical sequences during periods of change, this study highlights differences at different organisational levels.
Resumo:
Poor adaptation to climate change is a major threat to sustainable rice production in Nigeria. Determinants of appropriate climate-change adaptation strategies used by rice farmers in Southwestern Nigeria have not been fully investigated. In this study, the determinants of climate change adaptation strategies used by rice farmers in Southwestern Nigeria were investigated. Data were obtained through Focus Group Discussions (FGDs) and field survey conducted in the study areas. Data obtained were analyzed using descriptive and inferential statistical tools such as percentage and regression analysis. The major climate change adaptation strategies used by the respondents included; planting improved rice variety such as Federal Agricultural Research Oryza (FARO) (80.5 %), seeking early warning information (80.9 %), shifting planting date until the weather condition was favourable (99.1 %), and using chemical fertilizer on their farms in order to maintain soil fertility (20.5 %). The determinants of climate change adaptation strategies used by the farmers, included access to early warning information (β=43.04), access to fertilizer (β=5.78), farm plot size (β=–12.04) and access to regular water supply (β=–24.79). Climate change adaptation required provision of incentives to farmers, training on drought and flood control, and the use of improved technology to obtain higher yield.
Resumo:
The impacts of climate change on nitrogen (N) in a lowland chalk stream are investigated using a dynamic modelling approach. The INCA-N model is used to simulate transient daily hydrology and water quality in the River Kennet using temperature and precipitation scenarios downscaled from the General Circulation Model (GCM) output for the period 1961-2100. The three GCMs (CGCM2, CSIRO and HadCM3) yield very different river flow regimes with the latter projecting significant periods of drought in the second half of the 21st century. Stream-water N concentrations increase over time as higher temperatures enhance N release from the soil, and lower river flows reduce the dilution capacity of the river. Particular problems are shown to occur following severe droughts when N mineralization is high and the subsequent breaking of the drought releases high nitrate loads into the river system. Possible strategies for reducing climate-driven N loads are explored using INCA-N. The measures include land use change or fertiliser reduction, reduction in atmospheric nitrate and ammonium deposition, and the introduction of water meadows or connected wetlands adjacent to the river. The most effective strategy is to change land use or reduce fertiliser use, followed by water meadow creation, and atmospheric pollution controls. Finally, a combined approach involving all three strategies is investigated and shown to reduce in-stream nitrate concentrations to those pre-1950s even under climate change. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Farming freshwater prawns with fish in rice fields is widespread in coastal regions of southwest Bangladesh because of favourable resources and ecological conditions. This article provides an overview of an ecosystem-based approach to integrated prawn-fish-rice farming in southwest Bangladesh. The practice of prawn and fish farming in rice fields is a form of integrated aquaculture-agriculture, which provides a wide range of social, economic and environmental benefits. Integrated prawn-fish-rice farming plays an important role in the economy of Bangladesh, earning foreign exchange and increasing food production. However, this unique farming system in coastal Bangladesh is particularly vulnerable to climatechange. We suggest that community-based adaptation strategies must be developed to cope with the challenges. We propose that integrated prawn-fish-rice farming could be relocated from the coastal region to less vulnerable upland areas, but caution that this will require appropriate adaptation strategies and an enabling institutional environment.
Resumo:
Many institutions across sub-Saharan Africa (SSA) and many funding agencies that support them are currently engaged in initiatives that are targeted towards adapting rainfed agriculture to climate change. This does, however, present some very real and complex research and policy challenges. Given to date the generally low impact of agricultural research across SSA on improving the welfare of rainfed farmers under current climatic conditions, a comprehensive strategy is required if the considerably more complex challenge of adapting agriculture to future climate change is to bear fruit. In articulating such a strategy, it is useful to consider the criteria by which current successful initiatives should be judged.
Resumo:
To maintain synchrony in group activities, each individual within the group must continuously correct their movements to remain in time with the temporal cues available. Cues might originate from one or more members of the group. Current research suggests that when synchronising movements, individuals optimise their performance in terms of minimising variability of timing errors (asynchronies) between external cues and their own movements. However, the cost of this is an increase in the timing variability of their own movements. Here we investigate whether an individual’s timing strategy changes according to the task, in a group scenario. To investigate this, we employed a novel paradigm that positioned six individuals to form two chains with common origin and termination on the circumference of a circle. We found that participants with access to timing cues from only one other member used a strategy to minimise their asynchrony variance. In contrast, the participant at the common termination of the two chains, who was required to integrate timing cues from two members, used a strategy that minimised movement variability. We conclude that humans are able to flexibly switch timekeeping strategies to maintain task demands and thus optimise the temporal performance of their movements.
Strategies for plane change of Earth orbits using lunar gravity and derived trajectories of family G
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Crop water requirements are important elements for food production, especially in arid and semiarid regions. These regions are experience increasing population growth and less water for agriculture, which amplifies the need for more efficient irrigation. Improved water use efficiency is needed to produce more food while conserving water as a limited natural resource. Evaporation (E) from bare soil and Transpiration (T) from plants is considered a critical part of the global water cycle and, in recent decades, climate change could lead to increased E and T. Because energy is required to break hydrogen bonds and vaporize water, water and energy balances are closely connected. The soil water balance is also linked with water vapour losses to evapotranspiration (ET) that are dependent mainly on energy balance at the Earth’s surface. This work addresses the role of evapotranspiration for water use efficiency by developing a mathematical model that improves the accuracy of crop evapotranspiration calculation; accounting for the effects of weather conditions, e.g., wind speed and humidity, on crop coefficients, which relates crop evapotranspiration to reference evapotranspiration. The ability to partition ET into Evaporation and Transpiration components will help irrigation managers to find ways to improve water use efficiency by decreasing the ratio of evaporation to transpiration. The developed crop coefficient model will improve both irrigation scheduling and water resources planning in response to future climate change, which can improve world food production and water use efficiency in agriculture.