877 resultados para change detection, visione stereo, background difference
Resumo:
ABSTRACT World Heritage sites provide a glimpse into the stories and civilizations of the past. There are currently 1007 unique World Heritage properties with 779 being classified as cultural sites, 197 as natural sites, and 31 falling into the categories of both cultural and natural sites (UNESCO & World Heritage Centre, 1992-2015). However, of these 1007 World Heritage sites, at least 46 are categorized as in danger and this number continues to grow. These unique and irreplaceable sites are exceptional because of their universality. Consequently, since World Heritage sites belong to all the people of the world and provide inspiration and admiration to all who visit them, it is our responsibility to help preserve these sites. The key form of preservation involves the individual monitoring of each site over time. While traditional methods are still extremely valuable, more recent advances in the field of geographic and spatial technologies including geographic information systems (GIS), laser scanning, and remote sensing, are becoming more beneficial for the monitoring and overall safeguarding of World Heritage sites. Through the employment and analysis of more accurately detailed spatial data, World Heritage sites can be better managed. There is a strong urgency to protect these sites. The purpose of this thesis is to describe the importance of taking care of World Heritage sites and to depict a way in which spatial technologies can be used to monitor and in effect preserve World Heritage sites through the utilization of remote sensing imagery. The research conducted in this thesis centers on the Everglades National Park, a World Heritage site that is continually affected by changes in vegetation. Data used include Landsat satellite imagery that dates from 2001-2003, the Everglades' boundaries shapefile, and Google Earth imagery. In order to conduct the in-depth analysis of vegetation change within the selected World Heritage site, three main techniques were performed to study changes found within the imagery. These techniques consist of conducting supervised classification for each image, incorporating a vegetation index known as Normalized Vegetation Index (NDVI), and utilizing the change detection tool available in the Environment for Visualizing Images (ENVI) software. With the research and analysis conducted throughout this thesis, it has been shown that within the three year time span (2001-2003), there has been an overall increase in both areas of barren soil (5.760%) and areas of vegetation (1.263%) with a decrease in the percentage of areas classified as sparsely vegetated (-6.987%). These results were gathered through the use of the maximum likelihood classification process available in the ENVI software. The results produced by the change detection tool which further analyzed vegetation change correlate with the results produced by the classification method. As well, by utilizing the NDVI method, one is able to locate changes by selecting a specific area and comparing the vegetation index generated for each date. It has been found that through the utilization of remote sensing technology, it is possible to monitor and observe changes featured within a World Heritage site. Remote sensing is an extraordinary tool that can and should be used by all site managers and organizations whose goal it is to preserve and protect World Heritage sites. Remote sensing can be used to not only observe changes over time, but it can also be used to pinpoint threats within a World Heritage site. World Heritage sites are irreplaceable sources of beauty, culture, and inspiration. It is our responsibility, as citizens of this world, to guard these treasures.
Resumo:
Pigments of food and beverages could affect dental bleaching efficacy. The aim of this investigation was to evaluate color change and mineral loss of tooth enamel as well as the influence of staining solutions normally used by adolescent patients undergoing home bleaching. Initial hardness and baseline color were measured on enamel blocks. Specimens were divided into five groups (n = 5): G1 (control) specimens were kept in artificial saliva throughout the experiment (3 weeks); G2 enamel was exposed to 10% carbamide peroxide for 6 h daily, and after this period, the teeth were cleaned and stored in artificial saliva until the next bleaching session; and G3, G4, and G5 received the same treatments as G2, but after bleaching, they were stored for 1 h in cola soft drink, melted chocolate, or red wine, respectively. Mineral loss was obtained by the percentage of hardness reduction, and color change was determined by the difference between the data obtained before and after treatments. Data were subjected to analysis of variance and Fisher's test (a = 0.05). G3 and G5 showed higher mineral loss (92.96 +/- 5.50 and 94.46 +/- 1.00, respectively) compared to the other groups (p = 0.05). G5 showed high-color change (9.34 +/- 2.90), whereas G1 presented lower color change (2.22 +/- 0.44) (p = 0.05). Acidic drinks cause mineral loss of the enamel, which could modify the surface and reduce staining resistance after bleaching. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
L'analisi di un'immagine con strumenti automatici si è sviluppata in quella che oggi viene chiamata "computer vision", la materia di studio proveniente dal mondo informatico che si occupa, letteralmente, di "vedere oltre", di estrarre da una figura una serie di aspetti strutturali, sotto forma di dati numerici. Tra le tante aree di ricerca che ne derivano, una in particolare è dedicata alla comprensione di un dettaglio estremamente interessante, che si presta ad applicazioni di molteplici tipologie: la profondità. L'idea di poter recuperare ciò che, apparentemente, si era perso fermando una scena ed imprimendone l'istante in un piano a due dimensioni poteva sembrare, fino a non troppi anni fa, qualcosa di impossibile. Grazie alla cosiddetta "visione stereo", invece, oggi possiamo godere della "terza dimensione" in diversi ambiti, legati ad attività professionali piuttosto che di svago. Inoltre, si presta ad utilizzi ancora più interessanti quando gli strumenti possono vantare caratteristiche tecniche accessibili, come dimensioni ridotte e facilità d'uso. Proprio quest'ultimo aspetto ha catturato l'attenzione di un gruppo di lavoro, dal quale è nata l'idea di sviluppare una soluzione, chiamata "SuperStereo", capace di permettere la stereo vision usando uno strumento estremamente diffuso nel mercato tecnologico globale: uno smartphone e, più in generale, qualsiasi dispositivo mobile appartenente a questa categoria.
Resumo:
The objective of this study is to gain a quantitative understanding of land use and land cover change (LULCC) that have occurred in a rural Nicaraguan municipality by analyzing Landsat 5 Thematic Mapper (TM) images. By comparing the potential extent of tropical dry forest (TDF) with Landsat 5 TM images, this study analyzes the loss of this forest type on a local level for the municipality of San Juan de Cinco Pinos (63.5 km2) in the Department of Chinandega. Change detection analysis shows where and how land use has changed from 1985 to the present. From 1985 to 2011, nearly 15% of the TDF in San Juan de Cinco Pinos was converted to other land uses. Of the 1434.2 ha of TDF that was present in 1985, 1223.64 ha remained in 2011. The deforestation is primarily a result of agricultural expansion and fuelwood extraction. If current rates of TDF deforestation continue, the municipality faces the prospect of losing its forest cover within the next few decades.
Resumo:
A post classification change detection technique based on a hybrid classification approach (unsupervised and supervised) was applied to Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987, 2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National Park in the southern region of Haiti. Each image was classified individually into six land use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and barren land using unsupervised ISODATA and maximum likelihood supervised classifiers with the aid of field collected ground truth data collected in the field. Ground truth information, collected in the field in December 2007, and including equalized stratified random points which were visual interpreted were used to assess the accuracy of the classification results. The overall accuracy of the land classification for each image was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change detection technique was used to produce change images for 1987 to 2000, 1987 to 2004, and 2000 to 2004. It was found that significant changes in the land use/cover occurred over the 17- year period. The results showed increases in built up (from 10% to 17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed forest (from18 to 12%) were transformed into agriculture area or barren land. This study illustrated the continuing deforestation, land degradation and soil erosion in the region, which in turn is leading to decrease in vegetative cover. The study also showed the importance of Remote Sensing (RS) and Geographic Information System (GIS) technologies to estimate timely changes in the land use/cover, and to evaluate their causes in order to design an ecological based management plan for the park.
Resumo:
BACKGROUND: Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. METHODS: ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. RESULTS: For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). CONCLUSIONS: Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.
Resumo:
The present study investigated extraversion-related individual differences in visual short-term memory (VSTM) functioning. Event related potentials were recorded from 50 introverts and 50 extraverts while they performed a VSTM task based on a color-change detection paradigm with three different set sizes. Although introverts and extraverts showed almost identical hit rates and reaction times, introverts displayed larger N1 amplitudes than extraverts independent of color change or set size. Extraverts also showed larger P3 amplitudes compared to introverts when there was a color change, whereas no extraversion-related difference in P3 amplitude was found in the no-change condition. Our findings provided the first experimental evidence that introverts' greater reactivity to punctuate physical stimulation, as indicated by larger N1 amplitude, also holds for complex visual stimulus patterns. Furthermore, P3 amplitude in the change condition was larger for extraverts than introverts suggesting higher sensitivity to context change. Finally, there were no extraversion-related differences in P3 amplitude dependent on set size. This latter finding does not support the resource allocation explanation as a source of differences between introverts and extraverts.
Resumo:
The use of infrared thermography for the identification of lameness in cattle has increased in recent years largely because of its non-invasive properties, ease of automation and continued cost reductions. Thermography can be used to identify and determine thermal abnormalities in animals by characterizing an increase or decrease in the surface temperature of their skin. The variation in superficial thermal patterns resulting from changes in blood flow in particular can be used to detect inflammation or injury associated with conditions such as foot lesions. Thermography has been used not only as a diagnostic tool, but also to evaluate routine farm management. Since 2000, 14 peer reviewed papers which discuss the assessment of thermography to identify and manage lameness in cattle have been published. There was a large difference in thermography performance in these reported studies. However, thermography was demonstrated to have utility for the detection of contralateral temperature difference and maximum foot temperature on areas of interest. Also apparent in these publications was that a controlled environment is an important issue that should be considered before image scanning.
Resumo:
The aim of this work is an approach using multisensor remote sensing techniques to recognize the potential remains and recreate the original landscape of three archaeological sites. We investigate the spectral characteristics of the reflectance parameter and emissivity in the pattern recognition of archaeological materials in several hyperspectral scenes of the prehispanic site in Palmar Sur (Costa Rica), the Jarama Valley site and the celtiberian city of Segeda in Spain. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of HyMAP, AHS, MASTER and ATM have been used. Several experiments on natural scenarios of Costa Rica and Spain of different complexity, have been designed. Spectral patterns and thermal anomalies have been calculated as evidences of buried remains and change detection. First results, land cover change analyses and their consequences in the digital heritage registration are discussed.
Resumo:
Low cost RGB-D cameras such as the Microsoft’s Kinect or the Asus’s Xtion Pro are completely changing the computer vision world, as they are being successfully used in several applications and research areas. Depth data are particularly attractive and suitable for applications based on moving objects detection through foreground/background segmentation approaches; the RGB-D applications proposed in literature employ, in general, state of the art foreground/background segmentation techniques based on the depth information without taking into account the color information. The novel approach that we propose is based on a combination of classifiers that allows improving background subtraction accuracy with respect to state of the art algorithms by jointly considering color and depth data. In particular, the combination of classifiers is based on a weighted average that allows to adaptively modifying the support of each classifier in the ensemble by considering foreground detections in the previous frames and the depth and color edges. In this way, it is possible to reduce false detections due to critical issues that can not be tackled by the individual classifiers such as: shadows and illumination changes, color and depth camouflage, moved background objects and noisy depth measurements. Moreover, we propose, for the best of the author’s knowledge, the first publicly available RGB-D benchmark dataset with hand-labeled ground truth of several challenging scenarios to test background/foreground segmentation algorithms.
Resumo:
This thesis stems from the project with real-time environmental monitoring company EMSAT Corporation. They were looking for methods to automatically ag spikes and other anomalies in their environmental sensor data streams. The problem presents several challenges: near real-time anomaly detection, absence of labeled data and time-changing data streams. Here, we address this problem using both a statistical parametric approach as well as a non-parametric approach like Kernel Density Estimation (KDE). The main contribution of this thesis is extending the KDE to work more effectively for evolving data streams, particularly in presence of concept drift. To address that, we have developed a framework for integrating Adaptive Windowing (ADWIN) change detection algorithm with KDE. We have tested this approach on several real world data sets and received positive feedback from our industry collaborator. Some results appearing in this thesis have been presented at ECML PKDD 2015 Doctoral Consortium.
Resumo:
The problem of decentralized sequential detection is studied in this thesis, where local sensors are memoryless, receive independent observations, and no feedback from the fusion center. In addition to traditional criteria of detection delay and error probability, we introduce a new constraint: the number of communications between local sensors and the fusion center. This metric is able to reflect both the cost of establishing communication links as well as overall energy consumption over time. A new formulation for communication-efficient decentralized sequential detection is proposed where the overall detection delay is minimized with constraints on both error probabilities and the communication cost. Two types of problems are investigated based on the communication-efficient formulation: decentralized hypothesis testing and decentralized change detection. In the former case, an asymptotically person-by-person optimum detection framework is developed, where the fusion center performs a sequential probability ratio test based on dependent observations. The proposed algorithm utilizes not only reported statistics from local sensors, but also the reporting times. The asymptotically relative efficiency of proposed algorithm with respect to the centralized strategy is expressed in closed form. When the probabilities of false alarm and missed detection are close to one another, a reduced-complexity algorithm is proposed based on a Poisson arrival approximation. In addition, decentralized change detection with a communication cost constraint is also investigated. A person-by-person optimum change detection algorithm is proposed, where transmissions of sensing reports are modeled as a Poisson process. The optimum threshold value is obtained through dynamic programming. An alternative method with a simpler fusion rule is also proposed, where the threshold values in the algorithm are determined by a combination of sequential detection analysis and constrained optimization. In both decentralized hypothesis testing and change detection problems, tradeoffs in parameter choices are investigated through Monte Carlo simulations.
Resumo:
Finding rare events in multidimensional data is an important detection problem that has applications in many fields, such as risk estimation in insurance industry, finance, flood prediction, medical diagnosis, quality assurance, security, or safety in transportation. The occurrence of such anomalies is so infrequent that there is usually not enough training data to learn an accurate statistical model of the anomaly class. In some cases, such events may have never been observed, so the only information that is available is a set of normal samples and an assumed pairwise similarity function. Such metric may only be known up to a certain number of unspecified parameters, which would either need to be learned from training data, or fixed by a domain expert. Sometimes, the anomalous condition may be formulated algebraically, such as a measure exceeding a predefined threshold, but nuisance variables may complicate the estimation of such a measure. Change detection methods used in time series analysis are not easily extendable to the multidimensional case, where discontinuities are not localized to a single point. On the other hand, in higher dimensions, data exhibits more complex interdependencies, and there is redundancy that could be exploited to adaptively model the normal data. In the first part of this dissertation, we review the theoretical framework for anomaly detection in images and previous anomaly detection work done in the context of crack detection and detection of anomalous components in railway tracks. In the second part, we propose new anomaly detection algorithms. The fact that curvilinear discontinuities in images are sparse with respect to the frame of shearlets, allows us to pose this anomaly detection problem as basis pursuit optimization. Therefore, we pose the problem of detecting curvilinear anomalies in noisy textured images as a blind source separation problem under sparsity constraints, and propose an iterative shrinkage algorithm to solve it. Taking advantage of the parallel nature of this algorithm, we describe how this method can be accelerated using graphical processing units (GPU). Then, we propose a new method for finding defective components on railway tracks using cameras mounted on a train. We describe how to extract features and use a combination of classifiers to solve this problem. Then, we scale anomaly detection to bigger datasets with complex interdependencies. We show that the anomaly detection problem naturally fits in the multitask learning framework. The first task consists of learning a compact representation of the good samples, while the second task consists of learning the anomaly detector. Using deep convolutional neural networks, we show that it is possible to train a deep model with a limited number of anomalous examples. In sequential detection problems, the presence of time-variant nuisance parameters affect the detection performance. In the last part of this dissertation, we present a method for adaptively estimating the threshold of sequential detectors using Extreme Value Theory on a Bayesian framework. Finally, conclusions on the results obtained are provided, followed by a discussion of possible future work.
Resumo:
The study of Quality of Life (Qol) has been conducted on various scales throughout the years with focus on assessing overall quality of living amongst citizens. The main focus in these studies have been on economic factors, with the purpose of creating a Quality of Life Index (QLI).When it comes down to narrowing the focus to the environment and factors like Urban Green Spaces (UGS) and air quality the topic gets more focused on pointing out how each alternative meets this certain criteria. With the benefits of UGS and a healthy environment in focus a new Environmental Quality of Life Index (EQLI) will be proposed by incorporating Multi Criteria Analysis (MCA) and Geographical Information Systems (GIS). Working with MCA on complex environmental problems and incorporating it with GIS is a challenging but rewarding task, and has proven to be an efficient approach among environmental scientists. Background information on three MCA methods will be shown: Analytical Hierarchy Process (AHP), Regime Analysis and PROMETHEE. A survey based on a previous study conducted on the status of UGS within European cities was sent to 18 municipalities in the study area. The survey consists of evaluating the current status of UGS as well as planning and management of UGS with in municipalities for the purpose of getting criteria material for the selected MCA method. The current situation of UGS is assessed with use of GIS software and change detection is done on a 10 year period using NDVI index for comparison purposes to one of the criteria in the MCA. To add to the criteria, interpolation of nitrogen dioxide levels was performed with ordinary kriging and the results transformed into indicator values. The final outcome is an EQLI map with indicators of environmentally attractive municipalities with ranking based on predefinedMCA criteria using PROMETHEE I pairwise comparison and PROMETHEE II complete ranking of alternatives. The proposed methodology is applied to Lisbon’s Metropolitan Area, Portugal.