966 resultados para cell-type specificity
Resumo:
RESUMO: O processo de glicosilação é a modificação pós-traducional de proteínas mais comum e está envolvido em vários processos fisiológicos e patológicos. Especificamente, certos perfis glicosídeos estão correlacionados a estados específicos de diferenciação celular, e podem modular vários eventos celulares, como sinalização celular, migração celular e interações hospedeiro-patogénio. Assim sendo, a glicosilação desempenha um papel crucial na modulação de vários processos imunológicos. No entanto, permanece por esclarecer como as estruturas glicosídicas influenciam a imunidade. Especificamente, algumas estruturas glicosídicas terminais que estão modificadas pela ligação de ácido siálico desempenham um papel importante em várias funções do sistema imune, nomeadamente migração leucocitária em contexto de inflamação e ativação de células imunes. Como tal, este trabalho teve como objectivo investigar como a expressão de certos glicanos influencia componentes importantes da resposta imune inata e adaptativa. Este trabalho está dividido em três componentes principais: 1) A imunidade está amplamente dependente da habilidade das células circulantes migrarem para os tecidos inflamados, sendo que a ligação de leucócitos à Eselectina endotelial é o primeiro passo. Assim, nós analisámos a estrutura e função dos ligandos de E-selectina que são expressos pelas células humanas mononucleares de sangue periférico (PBMCs), fornecendo novos conhecimentos para a compreensão dos intervenientes moleculares que mediam a ligação dos monócitos, células CD4+ e CD8+T e células B ao endotélio vascular. Surpreendentemente, os monócitos apresentaram maior capacidade de ligação à E-selectina comparativamente aos linfócitos. Esta observação pode ser explicada pelo facto de os monócitos humanos expressarem, uniformemente, um vasto reportório de glicoproteínas que exibem afinidade de ligação à E-selectina, nomeadamente: as glicoformas do CD43 (CD43E) e do CD44 (HCELL), em adição à já previamente reportada glicoforma da PSGL-1 (CLA). Consistentemente, a diferente capacidade que as diversas populações linfocitárias apresentam de se ligar à E-selectina, está integralmente relacionada com a sua expressão de glicoproteínas com afinidade de ligação à E-selectina. Enquanto que as células CD4+T apresentam uma elevada reatividade à E-selectina, as células CD8+T e B demonstram pouca ou nenhuma capacidade de ligação à E-selectina. Esta atividade de ligação à E-selectina das células CD4+T é conferida pela expressão de HCELL, em adição às já previamente reportadas CLA e CD43E. As células CD8+ T não expressam HCELL e apenas expressam pequenas quantidades de CLA e CD43E, enquanto que as células B não expressam ligandos de Eselectina. Mais, a exofucosilação da superfície destas células, levou ao dramático aumento da expressão dos ligandos de E-selectina em todos as populações leucocitárias, verificando-se que a criação de certos ligandos de E-selectina está dependente do tipo de célula, após fucosilação. Colectivamente, estes resultados redefinem o nosso conhecimento acerca dos mecanismos moleculares que governam o tráfico das células mononucleares de sangue periférico em contexto de inflamação. 2) A habilidade das células dendríticas (DCs) para extravasarem em locais de inflamação é crucial para o sucesso da terapia com DCs. Assim, analisámos a estrutura e função das moléculas de adesão que mediam a migração transendotelial (TEM) das DCs. Para isso, foram usadas DCs geradas a partir da diferenciação de monócitos (mo-DCS), obtidos quer pelo métodos de separação imuno-magnética de células CD14+ (CD14-S) ou por isolamento por aderência ao plástico (PA-S). Os resultados obtidos indicam que as glicoformas de ligação à Eselectina de PSGL-1, CD43 e CD44 são expressas pelas CD14-S mo-DCs, enquanto que as PA-S mo-DCs expressam apenas CLA. É importante notar que a ligação do CD44 nas mo-DCs, mas não nas PA-S mo-DCs, desencadeia a ativação e consequente adesão da VLA-4 ao endotélio na ausência de um gradiente de quimiocinas. Procedeu-se também à análise dos ligandos E-selectina expressos em mo-DCs geradas a partir de monócitos do sangue do cordão umbilical (UCB) e, inesperadamente, as UCB mo-DCs não expressam qualquer glicoproteína com reatividade à E-selectina. Além disso, a exofucosilação das mo- DCs humanas utilizando uma α(1,3)-fucosiltransferase aumenta significativamente a expressão de HCELL e, portanto, estas células apresentam uma capacidade aumentada para se ligarem à E-selectina em condições de fluxo hemodinâmico. Estes resultados destacam o papel do HCELL no desencadeamento do TEM das CD14-S mo-DCs e sugerem que estratégias para potenciar a expressão de HCELL poderão impulsionar o recrutamento de mo-DCs para locais de inflamação. 3) Outro obstáculo para alcançar o sucesso promissor de vacinas baseadas em DCs é o estabelecimento de abordagens eficientes que poderão melhorar o estado de maturação e apresentação antigénica das DCs. Por conseguinte, foram investigadas abordagens alternativas que podem superar este obstáculo. Através da remoção de ácido siálico de superfície celular das DCs, conseguiu-se induzir a maturação de DC humanas e de ratinhos. Notavelmente, tanto as DCs humanas como as de ratinho, ao serem desialiladas mostraram uma capacidade aumentada para induzir a proliferação de células T, para secretar citocinas Th1 e para induzir a morte específica de células tumorais. Em adição, as DCs desialiladas apresentam uma maior capacidade de apresentação cruzada de antigénios tumorais às células T citotóxicas. Colectivamente, o presente estudo oferece uma visão chave para optimizar a capacidade das DCs em induzir respostas imunitárias anti-tumorais, e indica que o tratamento com sialidase é uma nova tecnologia para melhorar a eficácia e aplicabilidade das vacinas baseadas em DCs. Coletivamente, os nossos resultados demostram como a glicosilação e a sua manipulação podem modular a imunidade. Concretamente, através de uma reação de exofucosilação conseguimos aumentar fortemente a capacidade de os leucócitos extravasarem para os tecidos afectados, enquanto que a remoção dos níveis de ácido siálico da superfície celular das DCs, induz potentes respostas anti-tumorais mediadas por células T citotóxicas. ------------------------------------ ABSTRACT: Glycosylation is the most widely form of protein post-translational modification and is involved in many physiological and pathological processes. Specifically, certain patterns of glycosylation are associated with determined stages of cell differentiation and can modulate processes like cell-signaling and migration and host-pathogen interactions. As such, glycosylation plays a crucial role in the modulation of several immune events. However, how glycans execute this immune-modulation and, therefore, influence immunity is still poorly unknown. Specifically, some terminal sialic acid-modified determinants are known to be involved in several physiological immune processes, including leukocyte trafficking into sites of inflammation and cell immune activation. Therefore, in this work, we sought to investigate more deeply how the expression of these glycosidic structures affects events form both innate and adaptive immune responses. To this end, we divided our work into three main parts: 1) Immunity critically depends on the ability of sentinel circulating cells to infiltrate injured sites, of which leukocyte binding to endothelial E-selectin is the critical first step. Thus, we first analyzed the structure and function of the E-selectin ligands expressed on native human peripheral blood mononuclear cells (PBMCs), providing novel insights into the molecular effectors governing adhesion of circulating monocytes, and of circulating CD4+T, CD8+T and B cells, to vascular endothelium under hemodynamic shear conditions. Strikingly, monocytes show a higher ability to tether and roll on endothelial cells than lymphocyte subsets. This is due to the fact that human circulating monocytes uniformly display a wide repertoire of E-selectin binding glycoproteins, namely the E-selectin-binding glycoforms of CD43 (CD43E) and CD44 (HCELL), in addition to the previously described E-selectin-binding glycoform of PSGL-1 (CLA). In addition, we also observed a differential ability of the different lymphocyte subsets to bind to Eselectin under hemodynamic shear stress conditions, and these differences were highly correlated with their individual expression of E-selectin binding glycoproteins. While CD4+T cells show a robust E-selectin binding ability, CD8+T and B cells show little to no E-selectin reactivity. CD4+T cell potent Eselectin rolling activity is conferred by HCELL expression, in addition to the previously reported E-selectin-binding glycoproteins CD43E and CLA. CD8+T cells display no HCELL and low amounts of CLA and CD43E, whereas B cells lack E-selectin ligand expression. Moreover, enforced exofucosylation of cell surface of these cells noticeably increases expression of functional E-selectin ligands among all leukocytes subsets, with cell type-dependent specificity in the protein scaffolds that are modified. Taken together, these findings redefine our understanding of the molecular mechanisms governing the trafficking patterns of PBMCs that are relevant in the context of acute or chronic inflammatory conditions. 2) The ability of circulating dendritic cells (DCs) to extravasate at inflammatory sites is critical to the success of DC-based therapies. Therefore, we assessed the structure and function of adhesion molecules mediating the transendothelial migration (TEM) of human monocyte derived-DCs (mo-DCs), obtained either by CD14 positive immune-magnetic selection (CD14-S) or by plastic adherence of blood monocytes (PA-S). We report for the first time that the E-selectin binding glycoforms of PSGL-1, CD43 and CD44 are all expressed on CD14-S mo-DCs, in contrast to PA-S mo-DCs that express only CLA. Importantly, CD44 engagement on CD14-S mo-DCs, but not on PA-S mo-DCs, triggers VLA-4-dependent adhesiveness and programs TEM in absence of chemokine gradient. We also analyzed the E-selectin ligands expressed on mo-DCs generated from umbilical cord blood (UCB) monocytes, and unexpectedly, UCB mo-DCs do not express any glycoprotein with E-selectin reactivity. Furthermore, exoglycosylation of human mo-DCs using an α(1,3)-fucosyltransferase significantly increases expression of HCELL, and therefore exofucosylated mo-DCs exhibit an augmented ability to bind to E-selectin under hemodynamic shear stress conditions. These findings highlight a role for HCELL engagement in priming TEM of CD14-S mo-DCs, and suggest that strategies to enforce HCELL expression could boost mo-DC recruitment to inflammatory sites. 3) Another obstacle to achieve the promising success of DC-based vaccines is the establishment of efficient approaches that could successfully enhance maturation and cross-presentation ability of DCs. Therefore, we investigated an alternative approach that can overcome this problem. Through removal of sialic acid content from DC cell surface we are able to elicit maturation of both human and mouse DCs. Notably, desialylated human and murine DCs showed enhanced ability to induce autologous T cell to proliferate, to secrete Th1 cytokines and to kill tumor cells. Moreover, desialylated DCs display enhanced cross-presentation of tumor antigens to cytotoxic CD8+ T cells. Collectively, this study offers key insight to optimize the ability of DCs to boost anti-tumor immune responses, and indicates that the treatment with an exogenous sialidase is a powerful new technology to improve the efficacy and applicability of DC-based vaccines. Overall, our findings show how glycosylation and its manipulation can modulate immunity. Concretely, through an exofucosylation reaction we are able to greatly augment the ability of leukocytes to extravasate into injured tissues, while removal of sialic acid moieties from cell surface of DCs, significantly potentiate their ability to induce anti-tumor cytotoxic T cell-mediate responses.
Resumo:
RESUMO:O processo de glicosilação é a modificação pós-traducional de proteínas mais comum e está envolvido em vários processos fisiológicos e patológicos. Especificamente, certos perfis glicosídeos estão correlacionados a estados específicos de diferenciação celular, e podem modular vários eventos celulares, como sinalização celular, migração celular e interações hospedeiro-patogénio. Assim sendo, a glicosilação desempenha um papel crucial na modulação de vários processos imunológicos. No entanto, permanece por esclarecer como as estruturas glicosídicas influenciam a imunidade. Especificamente, algumas estruturas glicosídicas terminais que estão modificadas pela ligação de ácido siálico desempenham um papel importante em várias funções do sistema imune, nomeadamente migração leucocitária em contexto de inflamação e ativação de células imunes. Como tal, este trabalho teve como objectivo investigar como a expressão de certos glicanos influencia componentes importantes da resposta imune inata e adaptativa. Este trabalho está dividido em três componentes principais: 1) A imunidade está amplamente dependente da habilidade das células circulantes migrarem para os tecidos inflamados, sendo que a ligação de leucócitos à Eselectina endotelial é o primeiro passo. Assim, nós analisámos a estrutura e função dos ligandos de E-selectina que são expressos pelas células humanas mononucleares de sangue periférico (PBMCs), fornecendo novos conhecimentos para a compreensão dos intervenientes moleculares que mediam a ligação dos monócitos, células CD4+ e CD8+T e células B ao endotélio vascular. Surpreendentemente, os monócitos apresentaram maior capacidade de ligação à E-selectina comparativamente aos linfócitos. Esta observação pode ser explicada pelo facto de os monócitos humanos expressarem, uniformemente, um vasto reportório de glicoproteínas que exibem afinidade de ligação à E-selectina, nomeadamente: as glicoformas do CD43 (CD43E) e do CD44 (HCELL), em adição à já previamente reportada glicoforma da PSGL-1 (CLA). Consistentemente, a diferente capacidade que as diversas populações linfocitárias apresentam de se ligar à E-selectina, está integralmente relacionada com a sua expressão de glicoproteínas com afinidade de ligação à E-selectina. Enquanto que as células CD4+T apresentam uma elevada reatividade à E-selectina, as células CD8+T e B demonstram pouca ou nenhuma capacidade de ligação à E-selectina. Esta atividade de ligação à E-selectina das células CD4+T é conferida pela expressão de HCELL, em adição às já previamente reportadas CLA e CD43E. As células CD8+ T não expressam HCELL e apenas expressam pequenas quantidades de CLA e CD43E, enquanto que as células B não expressam ligandos de Eselectina. Mais, a exofucosilação da superfície destas células, levou ao dramático aumento da expressão dos ligandos de E-selectina em todos as populações leucocitárias, verificando-se que a criação de certos ligandos de E-selectina está dependente do tipo de célula, após fucosilação. Colectivamente, estes resultados redefinem o nosso conhecimento acerca dos mecanismos moleculares que governam o tráfico das células mononucleares de sangue periférico em contexto de inflamação. 2) A habilidade das células dendríticas (DCs) para extravasarem em locais de inflamação é crucial para o sucesso da terapia com DCs. Assim, analisámos a estrutura e função das moléculas de adesão que mediam a migração transendotelial (TEM) das DCs. Para isso, foram usadas DCs geradas a partir da diferenciação de monócitos (mo-DCS), obtidos quer pelo métodos de separação imuno-magnética de células CD14+ (CD14-S) ou por isolamento por aderência ao plástico (PA-S). Os resultados obtidos indicam que as glicoformas de ligação à Eselectina de PSGL-1, CD43 e CD44 são expressas pelas CD14-S mo-DCs, enquanto que as PA-S mo-DCs expressam apenas CLA. É importante notar que a ligação do CD44 nas mo-DCs, mas não nas PA-S mo-DCs, desencadeia a ativação e consequente adesão da VLA-4 ao endotélio na ausência de um gradiente de quimiocinas. Procedeu-se também à análise dos ligandos E-selectina expressos em mo-DCs geradas a partir de monócitos do sangue do cordão umbilical (UCB) e, inesperadamente, as UCB mo-DCs não expressam qualquer glicoproteína com reatividade à E-selectina. Além disso, a exofucosilação das mo- DCs humanas utilizando uma α(1,3)-fucosiltransferase aumenta significativamente a expressão de HCELL e, portanto, estas células apresentam uma capacidade aumentada para se ligarem à E-selectina em condições de fluxo hemodinâmico. Estes resultados destacam o papel do HCELL no desencadeamento do TEM das CD14-S mo-DCs e sugerem que estratégias para potenciar a expressão de HCELL poderão impulsionar o recrutamento de mo-DCs para locais de inflamação. 3) Outro obstáculo para alcançar o sucesso promissor de vacinas baseadas em DCs é o estabelecimento de abordagens eficientes que poderão melhorar o estado de maturação e apresentação antigénica das DCs. Por conseguinte, foram investigadas abordagens alternativas que podem superar este obstáculo. Através da remoção de ácido siálico de superfície celular das DCs, conseguiu-se induzir a maturação de DC humanas e de ratinhos. Notavelmente, tanto as DCs humanas como as de ratinho, ao serem desialiladas mostraram uma capacidade aumentada para induzir a proliferação de células T, para secretar citocinas Th1 e para induzir a morte específica de células tumorais. Em adição, as DCs desialiladas apresentam uma maior capacidade de apresentação cruzada de antigénios tumorais às células T citotóxicas. Colectivamente, o presente estudo oferece uma visão chave para optimizar a capacidade das DCs em induzir respostas imunitárias anti-tumorais, e indica que o tratamento com sialidase é uma nova tecnologia para melhorar a eficácia e aplicabilidade das vacinas baseadas em DCs. Coletivamente, os nossos resultados demostram como a glicosilação e a sua manipulação podem modular a imunidade. Concretamente, através de uma reação de exofucosilação conseguimos aumentar fortemente a capacidade de os leucócitos extravasarem para os tecidos afectados, enquanto que a remoção dos níveis de ácido siálico da superfície celular das DCs, induz potentes respostas anti-tumorais mediadas por células T citotóxicas. ---------------------------- ABSTRACT: Glycosylation is the most widely form of protein post-translational modification and is involved in many physiological and pathological processes. Specifically, certain patterns of glycosylation are associated with determined stages of cell differentiation and can modulate processes like cell-signaling and migration and host-pathogen interactions. As such, glycosylation plays a crucial role in the modulation of several immune events. However, how glycans execute this immune-modulation and, therefore, influence immunity is still poorly unknown. Specifically, some terminal sialic acid-modified determinants are known to be involved in several physiological immune processes, including leukocyte trafficking into sites of inflammation and cell immune activation. Therefore, in this work, we sought to investigate more deeply how the expression of these glycosidic structures affects events form both innate and adaptive immune responses. To this end, we divided our work into three main parts: 1) Immunity critically depends on the ability of sentinel circulating cells to infiltrate injured sites, of which leukocyte binding to endothelial E-selectin is the critical first step. Thus, we first analyzed the structure and function of the E-selectin ligands expressed on native human peripheral blood mononuclear cells (PBMCs), providing novel insights into the molecular effectors governing adhesion of circulating monocytes, and of circulating CD4+T, CD8+T and B cells, to vascular endothelium under hemodynamic shear conditions. Strikingly, monocytes show a higher ability to tether and roll on endothelial cells than lymphocyte subsets. This is due to the fact that human circulating monocytes uniformly display a wide repertoire of E-selectin binding glycoproteins, namely the E-selectin-binding glycoforms of CD43 (CD43E) and CD44 (HCELL), in addition to the previously described E-selectin-binding glycoform of PSGL-1 (CLA). In addition, we also observed a differential ability of the different lymphocyte subsets to bind to Eselectin under hemodynamic shear stress conditions, and these differences were highly correlated with their individual expression of E-selectin binding glycoproteins. While CD4+T cells show a robust E-selectin binding ability, CD8+T and B cells show little to no E-selectin reactivity. CD4+T cell potent Eselectin rolling activity is conferred by HCELL expression, in addition to the previously reported E-selectin-binding glycoproteins CD43E and CLA. CD8+T cells display no HCELL and low amounts of CLA and CD43E, whereas B cells lack E-selectin ligand expression. Moreover, enforced exofucosylation of cell surface of these cells noticeably increases expression of functional E-selectin ligands among all leukocytes subsets, with cell type-dependent specificity in the protein scaffolds that are modified. Taken together, these findings redefine our understanding of the molecular mechanisms governing the trafficking patterns of PBMCs that are relevant in the context of acute or chronic inflammatory conditions. 2) The ability of circulating dendritic cells (DCs) to extravasate at inflammatory sites is critical to the success of DC-based therapies. Therefore, we assessed the structure and function of adhesion molecules mediating the transendothelial migration (TEM) of human monocyte derived-DCs (mo-DCs), obtained either by CD14 positive immune-magnetic selection (CD14-S) or by plastic adherence of blood monocytes (PA-S). We report for the first time that the E-selectin binding glycoforms of PSGL-1, CD43 and CD44 are all expressed on CD14-S mo-DCs, in contrast to PA-S mo-DCs that express only CLA. Importantly, CD44 engagement on CD14-S mo-DCs, but not on PA-S mo-DCs, triggers VLA-4-dependent adhesiveness and programs TEM in absence of chemokine gradient. We also analyzed the E-selectin ligands expressed on mo-DCs generated from umbilical cord blood (UCB) monocytes, and unexpectedly, UCB mo-DCs do not express any glycoprotein with E-selectin reactivity. Furthermore, exoglycosylation of human mo-DCs using an α(1,3)-fucosyltransferase significantly increases expression of HCELL, and therefore exofucosylated mo-DCs exhibit an augmented ability to bind to E-selectin under hemodynamic shear stress conditions. These findings highlight a role for HCELL engagement in priming TEM of CD14-S mo-DCs, and suggest that strategies to enforce HCELL expression could boost mo-DC recruitment to inflammatory sites.3) Another obstacle to achieve the promising success of DC-based vaccines is the establishment of efficient approaches that could successfully enhance maturation and cross-presentation ability of DCs. Therefore, we investigated an alternative approach that can overcome this problem. Through removal of sialic acid content from DC cell surface we are able to elicit maturation of both human and mouse DCs. Notably, desialylated human and murine DCs showed enhanced ability to induce autologous T cell to proliferate, to secrete Th1 cytokines and to kill tumor cells. Moreover, desialylated DCs display enhanced cross-presentation of tumor antigens to cytotoxic CD8+ T cells. Collectively, this study offers key insight to optimize the ability of DCs to boost anti-tumor immune responses, and indicates that the treatment with an exogenous sialidase is a powerful new technology to improve the efficacy and applicability of DC-based vaccines. Overall, our findings show how glycosylation and its manipulation can modulate immunity. Concretely, through an exofucosylation reaction we are able to greatly augment the ability of leukocytes to extravasate into injured tissues, while removal of sialic acid moieties from cell surface of DCs, significantly potentiate their ability to induce anti-tumor cytotoxic T cell-mediate responses.
Resumo:
The mechanism of CD8 cooperation with the TCR in antigen recognition was studied on live T cells. Fluorescence correlation measurements yielded evidence of the presence of two TCR and CD8 subpopulations with different lateral diffusion rate constants. Independently, evidence for two subpopulations was derived from the experimentally observed two distinct association phases of cognate peptide bound to class I MHC (pMHC) tetramers and the T cells. The fast phase rate constant ((1.7 +/- 0.2) x 10(5) M(-1) s(-1)) was independent of examined cell type or MHC-bound peptides' structure. Its value was much faster than that of the association of soluble pMHC and TCR ((7.0 +/- 0.3) x 10(3) M(-1) s(-1)), and close to that of the association of soluble pMHC with CD8 ((1-2) x 10(5) M(-1) s(-1)). The fast binding phase disappeared when CD8-pMHC interaction was blocked by a CD8-specific mAb. The latter rate constant was slowed down approximately 10-fold after cells treatment with methyl-beta-cyclodextrin. These results suggest that the most efficient pMHC-cell association route corresponds to a fast tetramer binding to a colocalized CD8-TCR subpopulation, which apparently resides within membrane rafts: the reaction starts by pMHC association with the CD8. This markedly faster step significantly increases the probability of pMHC-TCR encounters and thereby promotes pMHC association with CD8-proximal TCR. The slow binding phase is assigned to pMHC association with a noncolocalized CD8-TCR subpopulation. Taken together with results of cytotoxicity assays, our data suggest that the colocalized, raft-associated CD8-TCR subpopulation is the one capable of inducing T-cell activation.
Resumo:
Rotation-mediated aggregating brain cell cultures at two different maturational stages (DIV 11 and DIV 20) were subjected for 1 or 2 hours to ischaemic conditions by transient immobilization (arrest of media circulation). During recovery, cell damage was evaluated by measuring changes in cell type-specific enzyme activities and total protein content. It was found that in immature cultures (DIV 11), immobilization for 1 or 2 hours did not affect the parameters measured. By contrast, at DIV 20, ischaemic conditions for 1 hour caused a pronounced decrease in the activities of glutamic acid decarboxylase and choline acetyltransferase. A significant decrease in these neuron-specific enzyme activities was found at post-ischaemic days 1-14, indicating immediate and irreversible neuronal damage. The activity of the astrocyte-specific enzyme, glutamine synthetase, was significantly increased at 4 days post-treatment; equal to control values at 6 days; and significantly decreased at 14 days after the ischaemic insult. Immobilization of DIV 20 cultures for 2 hours caused a drastic reduction in all the parameters measured at post-ischaemic day 6. Generally, the ischaemic conditions appeared to be more detrimental to neurons than to astrocytes, and GABAergic neurons were more affected than cholinergic neurons.
Resumo:
Macrophages and muscle cells are the main targets for invasion of Trypanosoma cruzi. Ultrastructural studies of this phenomenon in vitro showed that invasion occurs by endocytosis, with attachment and internalization being mediated by different components capable of recognizing epi-or trypomastigotes (TRY). A parasitophorus vacuole was formed in both cell types, thereafter fusing with lysosomes. Then, the mechanism of T. cruzi invasion of host cells (HC) is essentially similar (during a primary infection in the abscence of a specific immune response), regardless of wether the target cell is a professional or a non-professional phagocytic cell. Using sugars, lectins, glycosidases, proteinases and proteinase inhibitors, we observed that the relative balance between exposed sialic acid and galactose/N-acetyl galactosamine (GAL) residues on the TRY surface, determines the parasite's capacity to invade HC, and that lectin-mediated phagocytosis with GAL specificity is important for internalization of T. cruzi into macrophages. On the other hand, GAL on the surface to heart muscle cells participate on TRY adhesion. TRY need to process proteolytically both the HC and their own surface, to expose the necessary ligands and receptors that allow binding to, and internalization in the host cell. The diverse range of molecular mechanisms which the parasite could use to invade the host cell may correspond to differences in the available "receptors"on the surface of each specific cell type. Acute phase components, with lectin or proteinase inhibitory activities (a-macroglobulins), may also be involved in T. cruzi-host cell interaction.
Resumo:
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-a and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-a concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure. [Authors]
Resumo:
More than a decade ago, 'plasticity' suddenly became a 'fashionable' topic with overemphasized implications for regenerative medicine. The concept of 'plasticity' is supported by old transplantation work, at least for embryonic cells, and metaplasia is a classic example of plasticity observed in patients. Nevertheless, the publication of a series of papers showing rare conversion of a given cell type into another unrelated cell raised the possibility of using any unaffected tissue to create at will new cells to replace a different failing tissue or organ. This resulted in disingenuous interpretations and a reason not to fund anymore research on embryonic stem cells (ESc). Moreover, many papers on plasticity were difficult to reproduce and thus questioned; raising issues about plasticity as a technical artefact or a consequence of rare spontaneous cells fusion. More recently, reprogramming adult differentiated cells to a pluripotent state (iPS) became possible, and later, one type of differentiated cell could be directly reprogrammed into another (e.g. fibroblasts into neurons) without reverting to pluripotency. Although the latter results from different and more robust experimental protocols, these phenomena also exemplify 'plasticity'. In this review, we want to place 'plasticity' in a historical perspective still taking into account ethical and political implications.
Resumo:
Through its life cycle from the insect vector to mammalian hosts Trypanosoma cruzi has developed clever strategies to reach the intracellular milieu where it grows sheltered from the hosts' immune system. We have been interested in several aspects of in vitro interactions of different infective forms of the parasite with cultured mammalian cells. We have observed that not only the classically infective trypomastigotes but also amastigotes, originated from the extracellular differentiation of trypomastigotes, can infect cultured cells. Interestingly, the process of invasion of different parasite infective forms is remarkably distinct and also highly dependent on the host cell type.
Resumo:
A new cell line, PC-0199-BR, was established from embryonated eggs of the mosquito Psorophora confinnis. To date (September 2000) it has had 62 continuous passages. This is the first report of a cell line of mosquitoes belonging to the genus Psorophora. Cell growth initially was achieved in the MM/VP12 medium, supplemented with 20% fetal bovine serum; however, the subcultures were later adapted to Grace's medium with 10% fetal bovine serum. Cell morphology in the primary cultures was heterogeneous; but later in the established cell line, the predominant cell type was epithelioid. Cultured cells were predominantly diploid (2n=6); however, chromosome abnormalities were observed in a small proportion of the cells in later passages. C and G band patterns were also determined in the karyotype. The cell line isozyme profiles coincided with pupae and adult samples of the species taken from the same colony. A preliminary arbovirus susceptibility study for the cell line was undertaken. No evidence was observed of contamination of the cell line with bacteria, fungi or mycoplasma.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a marked, rapid, and sustained increase in the activity of the astrocyte-specific enzyme glutamine synthetase (GS). This effect was accompanied by a small increase in RNA synthesis and a progressive reduction in DNA synthesis. Only mitotically active cultures were responsive to PMA treatments. Since in aggregate cultures astrocytes are the preponderant cell type, both in number and mitotic activity, it can be concluded that PMA induces and/or enhances the terminal differentiation of astrocytes. The developmental expression of GS was also greatly stimulated by mezerein, a potent nonphorbol tumor promoter, but not by 4 alpha-phorbol 12,13-didecanoate, a nonpromoting phorbol ester. Since both tumor promoters, PMA and mezerein, are potent and specific activators of C-kinase, it is suggested that C-kinase plays a regulatory role in the growth and differentiation of normal astrocytes.
Resumo:
Introduction: Apoptosis plays a central role in chronic hepatitis C virus (HCV) infection. Although the activation of cell death signals has been reported, HCV infection persists in most patients suggesting a pro-survival adaptation, eventually developing hepatocellular carcinoma. This study focused on the role of mitochondria in the activation of pro- and antiapoptotic response in cells expressing HCV proteins. Materials and Methods: Human Osteosarcoma U2-OS cells inducibly expressing the HCV polyprotein; huh7.5 hepatoma cells transfected with full length HCV genome. Results: Long term induction of viral proteins in U2-OS cells induced a cyclosporine A-sensitive cytochrome c partial release from mitochondria, revealed by immunofluorescence, western blot and spectral analysis. In HCV-transfected Huh7.5 cells, release of the apoptosis inducing factor (AIF) with no apparent nuclear translocation was also observed. HCV positive cells displayed an HIF-dependent enhanced glycolysis, charachterized by up-regulation of the mitochondria-bound Hexokinase II (HKII); preliminary data on signal transduction pathway revealed the iperphosphorylation of Glycogen synthase kinase 3b(GSK3b). Conclusion: HCV causes a cell stress activating an early apoptotic response, the entity of which likely depends on the cell type. Nevertheless a wide series of cell survival mechanisms are also triggered resulting in a metabolic adaptation possibly favouring carcinogenesis. Based on our results, we propose a pro-survival mechanism linking HCV infection to inhibition of GSK-3b, stabilization of HIF1a and up-regulation of HKII, the last events causing a glycolytic shift and protecting from apoptosis.
Deregulated MHC class II transactivator expression leads to a strong Th2 bias in CD4+ T lymphocytes.
Resumo:
The MHC class II (MHC-II) transactivator (CIITA) is the master transcriptional regulator of genes involved in MHC-II-restricted Ag presentation. Fine tuning of CIITA gene expression determines the cell type-specific expression of MHC-II genes. This regulation is achieved by the selective usage of multiple CIITA promoters. It has recently been suggested that CIITA also contributes to Th cell differentiation by suppressing IL-4 expression in Th1 cells. In this study, we show that endogenous CIITA is expressed at low levels in activated mouse T cells. Importantly CIITA is not regulated differentially in murine and human Th1 and Th2 cells. Ectopic expression of a CIITA transgene in multiple mouse cell types including T cells, does not interfere with normal development of CD4(+) T cells. However, upon TCR activation the CIITA transgenic CD4(+) T cells preferentially differentiate into IL-4-secreting Th2-type cells. These results imply that CIITA is not a direct Th1-specific repressor of the IL-4 gene and that tight control over the expression of CIITA and MHC-II is required to maintain the normal balance between Th1 and Th2 responses.
Resumo:
The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), which naturally persists in rodents, represents a model for HIV, HBV, and HCV. Cleavage of the viral glycoprotein precursor by membrane-bound transcription factor peptidase, site 1 (Mbtps1 or site-1 protease), is crucial for the life cycle of arenaviruses and therefore represents a potential target for therapy. Recently, we reported a viable hypomorphic allele of Mbtps1 (woodrat) encoding a protease with diminished enzymatic activity. Using the woodrat allele, we examine the role of Mbtps1 during persistent LCMV infection. Surprisingly, Mbtps1 inhibition limits persistent but not acute viral infection and is associated with an organ/cell type-specific decrease in viral titers. Analysis of bone marrow-derived dendritic cells from woodrat mice supports their specific role in resolving persistent viral infection. These results support in vivo targeting of Mbtps1 in the treatment of arenavirus infections and demonstrate a critical role for dendritic cells in persistent viral infections.
Resumo:
The aim of T cell vaccines is the expansion of antigen-specific T cells able to confer immune protection against pathogens or tumors. Although increase in absolute cell numbers, effector functions and TCR repertoire of vaccine-induced T cells are often evaluated, their reactivity for the cognate antigen versus their cross-reactive potential is rarely considered. In fact, little information is available regarding the influence of vaccines on T cell fine specificity of antigen recognition despite the impact that this feature may have in protective immunity. To shed light on the cross-reactive potential of vaccine-induced cells, we analyzed the reactivity of CD8(+) T cells following vaccination of HLA-A2(+) melanoma patients with Melan-A peptide, incomplete Freund's adjuvant and CpG-oligodeoxynucleotide adjuvant, which was shown to induce strong expansion of Melan-A-reactive CD8(+) T cells in vivo. A collection of predicted Melan-A cross-reactive peptides, identified from a combinatorial peptide library, was used to probe functional antigen recognition of PBMC ex vivo and Melan-A-reactive CD8(+) T cell clones. While Melan-A-reactive CD8(+) T cells prior to vaccination are usually constituted of widely cross-reactive naive cells, we show that peptide vaccination resulted in expansion of memory T cells displaying a reactivity predominantly restricted to the antigen of interest. Importantly, these cells are tumor-reactive.
Resumo:
Aggregating brain cell cultures at an advanced maturational stage (20-21 days in vitro) were subjected for 1-3 h to anaerobic (hypoxic) and/or stationary (ischemic) conditions. After restoration of the normal culture conditions, cell loss was estimated by measuring the release of lactate dehydrogenase as well as the irreversible decrease of cell type-specific enzyme activities, total protein and DNA content. Ischemia for 2 h induced significant neuronal cell death. Hypoxia combined with ischemia affected both neuronal and glial cells to different degrees (GABAergic neurons>cholinergic neurons>astrocytes). Hypoxic and ischemic conditions greatly stimulated the uptake of 2-deoxy-D-glucose, indicating increased glucose consumption. Furthermore, glucose restriction (5.5 mM instead of 25 mM) dramatically increased the susceptibility of neuronal and glial cells to hypoxic and ischemic conditions. Glucose media concentrations below 2 mM caused selective neuronal cell death in otherwise normal culture conditions. GABAergic neurons showed a particularly high sensitivity to glucose restriction, hypoxia, and ischemia. The pattern of ischemia-induced changes in vitro showed many similarities to in vivo findings, suggesting that aggregating brain cell cultures provide a useful in vitro model to study pathogenic mechanisms related to brain ischemia.