876 resultados para cell mediated response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient delivery of growth factors from carrier biomaterials depends critically on the release kinetics of the proteins that constitute the carrier. Immobilizing growth factors to calcium phosphate ceramics has been attempted by direct adsorption and usually resulted in a rapid and passive release of the superficially adherent proteins. The insufficient retention of growth factors limited their bioavailability and their efficacy in the treatment of bone regeneration. In this study, a coprecipitation technique of proteins and calcium phosphate was employed to modify the delivery of proteins from biphasic calcium phosphate (BCP) ceramics. To this end, tritium-labeled bovine serum albumin ([(3)H]BSA) was utilized as a model protein to analyze the coprecipitation efficacy and the release kinetics of the protein from the carrier material. Conventional adsorption of [(3)H]BSA resulted in a rapid and passive release of the protein from BCP ceramics, whereas the coprecipitation technique effectively prevented the burst release of [(3)H]BSA. Further analysis of the in vitro kinetics demonstrated a sustained, cell-mediated release of coprecipitated [(3)H]BSA from BCP ceramics induced by resorbing osteoclasts. The coprecipitation technique described herein, achieved a physiologic-like protein release, by incorporating [(3)H]BSA into its respective carriers, rendering it a promising tool in growth factor delivery for bone healing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://www.ncbi.nlm.nih.gov/pubmed/20153849

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diagnosis of drug hypersensitivity relies on history, skin tests, in vitro tests and provocation tests. In vitro tests are of great interest, due to possible reduction of drug provocation tests. In this review we focus on best investigated in vitro techniques for the diagnosis of T cell-mediated drug hypersensitivity reactions. As drug hypersensitivity relies on different pathomechanisms and as a single diagnostic test usually does not cover all possible reactions, it is advisable to combine different tests to increase the overall sensitivity. Recently, proliferation-based assays have been supplemented by a panel of novel in vitro tests including analysis of cytotoxic potential of effector cells (granzyme B, granulysin, CD107a), evaluation of cytokine secretion (IL-2, IL-5, IL-13, and IFN-γ) and up-regulation of cell surface activation markers (CD69). We discuss the latest findings and readout systems to identify causative drugs by detecting functional and phenotypic markers of drug-reacting cells, and their ability to enable a more conclusive diagnosis of drug allergy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During a systemic hypersensitivity reaction (SR), an increase in serum tryptase compared to the baseline value is an indicator of mast cell activation, most often due to an IgE-mediated mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we examined the potential inhibition by interferon-gamma (IFN gamma) of the early stages of low density lipoprotein (LDL) oxidation mediated by human peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) in Ham's F-10 medium supplemented with physiological amounts of L-tryptophan (Trp). We assessed LDL oxidation by measuring the consumption of LDL's major antioxidant (i.e., alpha-tocopherol) and targets for oxidation (cholesteryllinoleate and cholesterylarachidonate), together with the accumulation of cholesterylester hydroperoxides and the increase in relative electrophoretic mobility of the lipoprotein particle. Exposure of PBMC or MDM to IFN gamma induced the degradation of extracellular Trp with concomitant accumulation of kynurenine, anthranilic and 3-hydroxyanthranilic acid (3HAA) in the culture medium. Formation of 3HAA, but neither Trp degradation nor formation of kynurenine and anthranilic acid, was inhibited by low amounts of diphenylene iodonium (DPI) in a concentration-dependent manner. In contrast to oxidative Trp metabolism, exposure of human PBMC or MDM to IFN gamma failed to induce degradation of arginine, and nitrite was not detected in the cell supernatant, indicating that nitric oxide synthase was not induced under these conditions. Incubation of LDL in Trp-supplemented F-10 medium resulted in a time-dependent oxidation of the lipoprotein that was accelerated in the presence of PBMC or MDM but inhibited strongly in the presence of both cells and IFN gamma, i.e., when Trp degradation and formation of 3HAA were induced. In contrast, when IFN gamma was added to PBMC or MDM in F-10 medium that was virtually devoid of Trp, inhibition of cell-accelerated LDL oxidation was not observed. Exogenous 3HAA added to PBMC or purified monocytes in the absence of IFN gamma also strongly and in a concentration-dependent manner inhibited LDL oxidation. Selective inhibition of IFN gamma-induced formation of 3HAA by DPI caused reversion of the inhibitory action of this cytokine on both PBMC- and MDM-mediated LDL oxidation. These results show that IFN gamma treatment of human PBMC or MDM in vitro attenuates the extent of LDL oxidation caused by these cells, and indicate that Trp degradation with formation of 3HAA is a major contributing factor to this inhibitory activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Pulmonary complications of hematopoietic stem cell transplantation include infections and graft-versus-host diseases, such as idiopathic pneumonia syndrome (IPS). Conflicting data exist regarding the role of the interferon (IFN)-gamma-producing Th1 CD4(+) T-cell subset and IL-17A in IPS. OBJECTIVES: To determine the role of IFN-gamma and IL-17A in the establishment of pulmonary graft-versus-host disease. METHODS: A semiallogeneic murine model based on C57BL/6 x BALB/c as recipients with transplantation of BALB/c RAG2(-/-) bone marrow and transfer of different genetic knockout T cells (T-bet(-/-), IFN-gamma(-/-), IFN-gammaR(-/-)) on a BALB/c background. Lung tissue was examined for parenchymal changes and infiltrating cells by histology and fluorescence-activated cell sorter analysis. MEASUREMENTS AND MAIN RESULTS: After transfer of semiallogeneic bone marrow together with donor CD4(+) T cells lacking IFN-gamma or T-bet-a T-box transcription factor controlling Th1 commitment-we found severe inflammation in the lungs, but no enhancement in other organs. In contrast, wild-type donor CD4(+) T cells mediated minimal inflammation only, and donor CD8(+) T cells were not required for IPS development. Mechanistically, the absence of IFN-gamma or IFN-gamma signaling in pulmonary parenchymal cells promoted expansion of IL-17A-producing CD4(+) T cells and local IL-17A release. In vivo depletion of IL-17A reduced disease severity. CONCLUSIONS: One mechanism of IFN-gamma protection against IPS is negative regulation of the expansion of pathogenic IL-17A-producing CD4(+) T cells through interaction with the IFN-gamma receptor on the pulmonary parenchymal cell population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver diseases represent an important cause of morbidity and mortality in the world. Death of hepatocytes and other hepatic cell types is a characteristic feature of several forms of liver injury such as cholestasis, viral hepatitis, drug- or toxin-induced injury, and alcohol-induced liver damage. Moreover, irrespectively of the reason, liver injury seems to be facilitated by similar immune effector mechanisms common to these various liver diseases. Indeed, common immune effector mechanisms may explain the high prevalence of cirrhosis and cancer development in most forms of liver disease. Improved understanding of the immune cell-mediated mechanisms involved in hepatocyte cell death could be beneficial for the development of common therapeutic strategies against different forms of liver diseases. In this review, we will discuss novel findings on the role of different immune cells in liver disease and immune cell-induced death executioner mechanisms involved in hepatocyte cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the intestinal tract, only a single layer of epithelial cells separates innate and adaptive immune effector cells from a vast amount of antigens. Here, the immune system faces a considerable challenge in tolerating commensal flora and dietary antigens while preventing the dissemination of potential pathogens. Failure to tightly control immune reactions may result in detrimental inflammation. In this respect, 'conventional' regulatory CD4(+) T cells, including naturally occurring and adaptive CD4(+) CD25(+) Foxp3(+) T cells, Th3 and Tr1 cells, have recently been the focus of considerable attention. However, regulatory mechanisms in the intestinal mucosa are highly complex, including adaptations of nonhaematopoietic cells and innate immune cells as well as the presence of unconventional T cells with regulatory properties such as resident TCRgammadelta or TCRalphabeta CD8(+) intraepithelial lymphocytes. This review aims to summarize the currently available knowledge on conventional and unconventional regulatory T cell subsets (Tregs), with special emphasis on clinical data and the potential role or malfunctioning of Tregs in four major human gastrointestinal diseases, i.e. inflammatory bowel diseases, coeliac disease, food allergy and colorectal cancer. We conclude that the clinical data confirms some but not all of the findings derived from experimental animal models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of mice with the immunomodulating agent, Corynebacterium parvum (C. parvum), was shown to result in a severe and long-lasting depression of splenic natural killer (NK) cell-mediated cytotoxicity 5-21 days post-inoculation. Because NK cells have been implicated in immunosurveillance against malignancy (due to their spontaneous occurrence and rapid reactivity to a variety of histological types of tumors), as well as in resistance to established tumors, this decreased activity was of particular concern, since this effect is contrary to that which would be considered therapeutically desirable in cancer treatment (i.e. a potentiation of antitumor effector functions, including NK cell activity, would be expected to lead to a more effective destruction of malignant cells). Therefore, an analysis of the mechanism of this decline of splenic NK cell activity in C.parvum treated mice was undertaken.^ From in vitro co-culturing experiments, it was found that low NK-responsive C. parvum splenocytes were capable of reducing the normally high-reactivity of cells from untreated syngeneic mice to YAC-1 lymphoma, suggesting the presence of NK-directed suppressor cells in C. parvum treated animals. This was further supported by the demonstration of normal levels of cytotoxicity in C. parvum splenocyte preparations following Ficoll-Hypaque separation, which coincided with removal of the NK-suppressive capabilities of these cells. The T cell nature of these regulatory cells was indicated by (1) the failure of C. parvum to cause a reduction of NK cell activity, or the generation of NK-directed suppressor cells in T cell-deficient athymic mice, (2) the removal of C. parvum-induced suppression by T cell-depleting fractionation procedures or treatments, and (3) demonstration of suppression of NK cell activity by T cell-enriched C. parvum splenocytes. These studies suggest, therefore, that the eventual reduction of suppression by T cell elimination and/or inhibition, may result in a promotion of the antitumor effectiveness of C. parvum due to the contribution of "freed" NK effector cell activity.^ However, the temporary suppression of NK cell activity induced by C. parvum (reactivity of treated mice returns to normal levels within 28 days after C. parvum injection), may in fact be favorable in some situations, e.g. in bone marrow transplantation cases, since NK cells have been suggested to play a role also in the process of bone marrow graft rejection.^ Therefore, the discriminate use of agents such as C. parvum may allow for the controlled regulation of NK cell activity suggested to be necessary for the optimalization of therapeutic regimens. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Narcolepsy with cataplexy is tightly associated with the HLA class II allele DQB1*06:02. Evidence indicates a complex contribution of HLA class II genes to narcolepsy susceptibility with a recent independent association with HLA-DPB1. The cause of narcolepsy is supposed be an autoimmune attack against hypocretin-producing neurons. Despite the strong association with HLA class II, there is no evidence for CD4+ T-cell-mediated mechanism in narcolepsy. Since neurons express class I and not class II molecules, the final effector immune cells involved might include class I-restricted CD8+ T-cells. DESIGN HLA class I (A, B, and C) and II (DQB1) genotypes were analyzed in 944 European narcolepsy with cataplexy patients and in 4043 control subjects matched by country of origin. All patients and controls were DQB1*06:02 positive and class I associations were conditioned on DQB1 alleles. RESULTS HLA-A*11:01 (OR = 1.49 [1.18-1.87] P = 7.0*10-4), C*04:01 (OR = 1.34 [1.10-1.63] P = 3.23*10-3), and B*35:01 (OR=1.46 [1.13-1.89] P = 3.64*10-3) were associated with susceptibility to narcolepsy. Analysis of polymorphic class I amino-acids revealed even stronger associations with key antigen-binding residues HLA-A-Tyr9 (OR = 1.32 [1.15-1.52] P = 6.95*10-5) and HLA-C-Ser11 (OR=1.34 [1.15-1.57] P = 2.43*10-4). CONCLUSIONS Our findings provide a genetic basis for increased susceptibility to infectious factors or an immune cytotoxic mechanism in narcolepsy, potentially targeting hypocretin neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lindane, or γ-hexachlorocyclohexane, is a chlorinated hydrocarbon pesticide that was banned from U.S. production in 1976, but until recently continued to be imported and applied for occupational and domestic purposes. Lindane is known to cause central nervous system (CNS), immune, cardiovascular, reproductive, liver, and kidney toxicity. The mechanism for which lindane interacts with the CNS has been elucidated, and involves antagonism of the γ-aminobutyric acid/benzodiazepine (GABAA/BZD) receptor. Antagonism of this receptor results in the inhibition of Cl- channel flux, with subsequent convulsions, seizures, and paralysis. This response makes lindane a desirable defense against arthropod pests in agriculture and the home. However, formulation and application of this compound can contribute to human toxicity. In conjunction with this exposure scenario, workers may be subject to both heat and physical stress that may increase their susceptibility to pesticide toxicity by altering their cellular stress response. The kidneys are responsible for maintaining osmotic homeostasis, and are exposed to agents that undergo urinary excretion. The mechanistic action of lindane on the kidneys is not well understood. Lindane, in other organ systems, has been shown to cause cellular damage by generation of free radicals and oxidative stress. Previous research in our laboratory has shown that lindane causes apoptosis in distal tubule cells, and delays renal stress response under hypertonic stress. Characterizing the mechanism of action of lindane under conditions of physiologic stress is necessary to understand the potential hazard cyclodiene pesticides and other organochlorine compounds pose to exposed individuals under baseline conditions, as well as under conditions of physiologic stress. We demonstrated that exposure to lindane results in oxidative damage and dysregulation of glutathione response in renal distal tubule (MDCK) cells. We showed that under conditions of hypertonic stress, lindane-induced oxidative stress resulted in early onset apoptosis and corresponding down-regulated expression of the anti-apoptotic protein, Bcl-xL. Thus, the interaction of lindane with renal peripheral benzodiazepine receptors (PBR) is associated with attenuation of cellular protective proteins, making the cell more susceptible to injury or death. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Split-thickness pig skin was transplanted on severe combined immunodeficient mice so that pig dermal microvessels spontaneously inosculated with mouse microvessels and functioned to perfuse the grafts. Pig endothelial cells in the healed grafts constitutively expressed class I and class II major histocompatibility complex molecules. Major histocompatibility complex molecule expression could be further increased by intradermal injection of pig interferon-γ (IFN-γ) but not human IFN-γ or tumor necrosis factor. Grafts injected with pig IFN-γ also developed a sparse infiltrate of mouse neutrophils and eosinophils without evidence of injury. Introduction of human peripheral blood mononuclear cells into the animals by intraperitoneal inoculation resulted in sparse perivascular mononuclear cell infiltrates in the grafts confined to the pig dermis. Injection of pig skin grafts on mice that received human peripheral blood mononuclear cells with pig IFN-γ (but not human IFN-γ or heat-inactivated pig IFN-γ) induced human CD4+ and CD8+ T cells and macrophages to more extensivley infiltrate the pig skin grafts and injure pig dermal microvessels. These findings suggest that human T cell-mediated rejection of xenotransplanted pig organs may be prevented if cellular sources of pig interferon (e.g., passenger lymphocytes) are eliminated from the graft.