971 resultados para cell cycle protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-mos proto-oncogene, which is expressed at relatively high levels in male and female germ cells, plays a key role in oocyte meiotic maturation. The c-mos gene product in oocytes (p39$\sp{\rm c-mos}$) is necessary and sufficient to initiate meiosis. p39$\sp{\rm c-mos}$ is also an essential component of the cytostatic factor, which is responsible for arresting vertebrate oocytes at the second meiotic metaphase by stabilizing the maturation promoting factor (MPF). MPF is a universal regulator of both meiosis and mitosis. Much less is understood about c-mos expression and function in somatic cells. In addition to gonadal tissues, c-Mos has been detected in some somatic tissues and non-germ cell lines including NIH 3T3 cells as a protein termed p43$\sp{\rm c-mos}$. Since c-mos RNA transcripts were not previously detected in this cell line by Northern blot or S1 protection analyses, a search was made for c-mos RNA in NIH 3T3 cells. c-mos transcripts were detected using the highly sensitive RNA-PCR method and RNase protection assays. Furthermore, cell cycle analyses indicated that expression of c-mos RNA is tightly controlled in a cell cycle dependent manner with highest levels of transcripts (approximately 5 copies/cell) during the G2 phase.^ In order to determine the physiological significance of c-mos RNA expression in somatic cells, antisense mos was placed under the control of an inducible promoter and introduced into either NIH 3T3 cells or C2 cells. It was found that a basal level of expression of antisense mos resulted in interference with mitotic progression and growth arrest. Several nuclear abnormalities were observed, especially the appearance of binucleated and multinucleated cells as well as the extrusion of microvesicles containing cellular material. These results indicate that antisense mos expression results in a block in cytokinesis. In summary, these results establish that c-mos expression is not restricted to germ cells, but instead indicate that c-mos RNA expression occurs during the G2 stage of the cell cycle. Furthermore, these studies demonstrate that the c-mos proto-oncogene plays an important role in cell cycle progression. As in meiosis, c-mos may have a similar but not identical function in regulating cell cycle events in somatic cells, particularly in controlling mitotic progression via activation/stabilization of MPF. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3' end processing of animal replication-dependent histone mRNAs is activated during G1/S-phase transition. The processing site is recognized by stem-loop binding protein and the U7 snRNP, but cleavage additionally requires a heat-labile factor (HLF), composed of cleavage/polyadenylation specificity factor, symplekin, and cleavage stimulation factor 64 (CstF64). Although HLF has been shown to be cell cycle regulated, the mechanism of this regulation is unknown. Here we show that levels of CstF64 increase toward the S phase and its depletion affects histone RNA processing, S-phase progression, and cell proliferation. Moreover, analyses of the interactions between CstF64, symplekin, and the U7 snRNP-associated proteins FLASH and Lsm11 indicate that CstF64 is important for recruiting HLF to histone precursor mRNA (pre-mRNA)-resident proteins. Thus, CstF64 is central to the function of HLF and appears to be at least partly responsible for its cell cycle regulation. Additionally, we show that misprocessed histone transcripts generated upon CstF64 depletion mainly accumulate in the nucleus, where they are targets of the exosome machinery, while a small cytoplasmic fraction is partly associated with polysomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The levels of histone mRNA increase 35-fold as selectively detached mitotic CHO cells progress from mitosis through G1 and into S phase. Using an exogenous gene with a histone 3' end which is not sensitive to transcriptional or half-life regulation, we show that 3' processing is regulated as cells progress from G1 to S phase. The half-life of histone mRNA is similar in G1- and S-phase cells, as measured after inhibition of transcription by actinomycin D (dactinomycin) or indirectly after stabilization by the protein synthesis inhibitor cycloheximide. Taken together, these results suggest that the change in histone mRNA levels between G1- and S-phase cells must be due to an increase in the rate of biosynthesis, a combination of changes in transcription rate and processing efficiency. In G2 phase, there is a rapid 35-fold decrease in the histone mRNA concentration which our results suggest is due primarily to an altered stability of histone mRNA. These results are consistent with a model for cell cycle regulation of histone mRNA levels in which the effects on both RNA 3' processing and transcription, rather than alterations in mRNA stability, are the major mechanisms by which low histone mRNA levels are maintained during G1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MacroH2A is a core histone variant that plays an important role in the X-inactivation process during differentiation of embryonic stem cells. It has been shown that macroH2A changes in localization during the cell cycle of somatic cells. This study aims to determine how macroH2A changes during the cell cycle of embryonic stem cells. Male and female mouse embryonic stem cells were transfected with a GFP::macroH2A construct and the relationship between macroH2A and the cell cycle was determined using FACS. This study shows that macroH2A is altered during the cell cycle of embryonic stem cells as it is in somatic cells and that in randomly cycling cells, there is a correlation between macroH2A expression and the phases of the cell cycle. High GFP expressing cells are mostly in the G2/M phase and low GFP expressing cells are mostly in the G1 phase. This correlation indicated that macroH2A is replicated with cellular DNA during the S phase resulting in higher expression in the G2/M phase. Future research, such as RT-PCR and differentiation experiments, is needed to further study this relationship and determine whether this change is at the protein or RNA level and how it changes during differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies of p53 function have focused on genes transactivated by p53. It is less widely appreciated that p53 can repress target genes to affect a particular cellular response. There is evidence that repression is important for p53-induced apoptosis and cell cycle arrest. It is less clear if repression is important for other p53 functions. A comprehensive knowledge of the genes repressed by p53 and the cellular processes they affect is currently lacking. We used an expression profiling strategy to identify p53-responsive genes following adenoviral p53 gene transfer (Ad-p53) in PC3 prostate cancer cells. A total of 111 genes represented on the Affymetrix U133A microarray were repressed more than two fold (p ≤ 0.05) by p53. An objective assessment of array data quality was carried out using RT-PCR of 20 randomly selected genes. We estimate a confirmation rate of >95.5% for the complete data set. Functional over-representation analysis was used to identify cellular processes potentially affected by p53-mediated repression. Cell cycle regulatory genes exhibited significant enrichment (p ≤ 5E-28) within the repressed targets. Several of these genes are repressed in a p53-dependent manner following DNA damage, but preceding cell cycle arrest. These findings identify novel p53-repressed targets and indicate that p53-induced cell cycle arrest is a function of not only the transactivation of cell cycle inhibitors (e.g., p21), but also the repression of targets that act at each phase of the cell cycle. The mechanism of repression of this set of p53 targets was investigated. Most of the repressed genes identified here do not harbor consensus p53 DNA binding sites but do contain binding sites for E2F transcription factors. We demonstrate a role for E2F/RB repressor complexes in our system. Importantly, p53 is found at the promoter of CDC25A. CDC25A protein is rapidly degraded in response to DNA damage. Our group has demonstrated for the first time that CDC25A is also repressed at the transcript level by p53. This work has important implications for understanding the DNA damage cell cycle checkpoint response and the link between E2F/RB complexes and p53 in the repression of target genes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic toxicity was evaluated in Sprague-Dawley (SD) rats and A-strain mice exposed to HCHO inhalation at 0, 0.5, 3, or 15 ppm for six hours/day, five days/week for up to 24 weeks. Toxicity was measured by flow cytometry to detect changes in cell cycle RNA and DNA content and by alkaline elution to detect DNA protein cross-link (DPC) formation.^ A G(,2)M block was detected in SD rat marrow following one week of exposure to 0.5, 3, or 15 ppm HCHO, but this block did not persist. No effect was noticed in mouse marrow. Only a minimal increase in RNA content was detected in rat or mouse marrow while exfoliated lung cells showed a significant increase in RNA activity after one week of exposure.^ Acute exposure in SD rats for four hours/day for one or three days at 150 ppm showed an increase in RNA activity in exfoliated lung cells but not in the marrow after one day. On the third day, dead cells were detected in exfoliated lung cells.^ In alkaline elution studies, no DPC were detected in marrow of SD rats after 24 weeks exposure up to 15 ppm. During acute exposures, a dose response relationship was detected in SD rat exfoliated lung cells which yielded cross-linking factors of 0.954, 1.237, and 1.417 following a four hour exposure to 15, 50, or 150 ppm, respectively. No DPC were detected in the marrow at 150 ppm. In vitro exposures to HCHO of CHO and SHE cells and rat marrow cells revealed the production of DPC and DNA-DNA cross-links.^ Cytoxan treatment of SD rats was used to provide positive controls for flow cytometry and alkaline elution. A drastic reduction in RNA content and cycling cells occurred one day following treatment. After four days, RNA content was greatly increased; and on day eleven the marrow had regenerated. DPCs were detected in both the marrow and the exfoliated lung cells.^ The lack of significant responses in SD rats and A-strain mice below 15 ppm HCHO is explainable by host defense mechanisms. Apparently, the mucociliary apparatus and enzymatic detoxification are sufficient to reduce systemic toxicity to low level concentrations of formaldehyde. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the DMP1 transcription factor, a cyclin D-binding Myb-like protein, induces growth arrest in mouse embryo fibroblast strains but is devoid of antiproliferative activity in primary diploid fibroblasts that lack the ARF tumor suppressor gene. DMP1 binds to a single canonical recognition site in the ARF promoter to activate gene expression, and in turn, p19ARF synthesis causes p53-dependent cell cycle arrest. Unlike genes such as Myc, adenovirus E1A, and E2F-1, which, when overexpressed, activate the ARF-p53 pathway and trigger apoptosis, DMP1, like ARF itself, does not induce programmed cell death. Therefore, apart from its recently recognized role in protecting cells from potentially oncogenic signals, ARF can be induced in response to antiproliferative stimuli that do not obligatorily lead to apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using antisense RNA, Lck-deficient transfectants of a T helper 2 (Th2) clone have been derived and shown to have a qualitative defect in the T cell receptor signaling pathway. A striking feature observed only in Lck-deficient T cells was the presence of a constitutively tyrosine-phosphorylated 32-kDa protein. In the present study, we provide evidence that this aberrantly hyperphosphorylated protein is p34cdc2 (cdc2) a key regulator of cell-cycle progression. Lck-deficient transfectants expressed high levels of cdc2 protein and its regulatory units, cyclins A and B. The majority of cdc2, however, was tyrosine-phosphorylated and therefore enzymatically inactive. The transfectants were significantly larger than the parental cells and contained 4N DNA. These results establish that a deficiency in Lck leads to a cell-cycle arrest in G2. Moreover, transfected cells were hypersusceptible to apoptosis when activated through the T cell receptor. Importantly, however, this hypersusceptibility was largely reversed in the presence of T cell growth factors. These findings provide evidence that, in mature T lymphocytes, cell-cycle progression through the G2–M check point requires expression of the Src-family protein tyrosine kinase, Lck. This requirement is Lck-specific; it is observed under conditions in which the closely related Fyn kinase is expressed normally, evincing against a redundancy of function between these two kinases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CENP-E, a kinesin-like protein that is known to associate with kinetochores during all phases of mitotic chromosome movement, is shown here to be a component of meiotic kinetochores as well. CENP-E is detected at kinetochores during metaphase I in both mice and frogs, and, as in mitosis, is relocalized to the midbody during telophase. CENP-E function is essential for meiosis I because injection of an antibody to CENP-E into mouse oocytes in prophase completely prevented progression of those oocytes past metaphase I. Beyond this, CENP-E is modified or masked during the natural, Mos-dependent, cell cycle arrest that occurs at metaphase II, although it is readily detectable at the kinetochores in metaphase II oocytes derived from mos-deficient (MOS−/−) mice that fail to arrest at metaphase II. This must reflect a masking of some CENP-E epitopes, not the absence of CENP-E, in meiosis II because a different polyclonal antibody raised to the tail of CENP-E detects CENP-E at kinetochores of metaphase II-arrested eggs and because CENP-E reappears in telophase of mouse oocytes activated in the absence of protein synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germ-line mutations of the BRCA1 gene predispose women to early-onset breast and ovarian cancer by compromising the gene’s presumptive function as a tumor suppressor. Although the biochemical properties of BRCA1 polypeptides are not understood, their expression pattern and subcellular localization suggest a role in cell-cycle regulation. When resting cells are induced to proliferate, the steady-state levels of BRCA1 increase in late G1 and reach a maximum during S phase. Moreover, in S phase cells, BRCA1 polypeptides are hyperphosphorylated and accumulate into discrete subnuclear foci termed “BRCA1 nuclear dots.” BRCA1 associates in vivo with a structurally related protein termed BARD1. Here we show that the steady-state levels of BARD1, unlike those of BRCA1, remain relatively constant during cell cycle progression. However, immunostaining revealed that BARD1 resides within BRCA1 nuclear dots during S phase of the cell cycle, but not during the G1 phase. Nevertheless, BARD1 polypeptides are found exclusively in the nuclear fractions of both G1- and S-phase cells. Therefore, progression to S phase is accompanied by the aggregation of nuclear BARD1 polypeptides into BRCA1 nuclear dots. This cell cycle-dependent colocalization of BARD1 and BRCA1 indicates a role for BARD1 in BRCA1-mediated tumor suppression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have characterized the BRCA1 gene product by using four polyclonal antibodies raised against peptides from four different regions of the protein. The antibodies specifically recognize an ≈220-kDa BRCA1 protein that is predominantly expressed in the nucleus of both normal and neoplastic breast cancer cells. It is a serine phosphoprotein that undergoes hyperphosphorylation during late G1 and S phases of the cell cycle and is transiently dephosphorylated early after M phase. We propose that BRCA1 is a phosphoprotein that alters in a qualitative and quantitative manner during cell cycle progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate, by using mathematical modeling of cell division cycle (CDC) dynamics, a potential mechanism for precisely controlling the frequency of cell division and regulating the size of a dividing cell. Control of the cell cycle is achieved by artificially expressing a protein that reversibly binds and inactivates any one of the CDC proteins. In the simplest case, such as the checkpoint-free situation encountered in early amphibian embryos, the frequency of CDC oscillations can be increased or decreased by regulating the rate of synthesis, the binding rate, or the equilibrium constant of the binding protein. In a more complex model of cell division, where size-control checkpoints are included, we show that the same reversible binding reaction can alter the mean cell mass in a continuously dividing cell. Because this control scheme is general and requires only the expression of a single protein, it provides a practical means for tuning the characteristics of the cell cycle in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell cycle progression is regulated by cAMP in several cell types. Cellular cAMP levels depend on the activity of different adenylyl cyclases (ACs), which have varied signal-receiving capabilities. The role of individual ACs in regulating proliferative responses was investigated. Native NIH 3T3 cells contain AC6, an isoform that is inhibited by a variety of signals. Proliferation of exogenous AC6-expressing cells was the same as in control cells. In contrast, expression of AC2, an isoform stimulated by protein kinase C (PKC), resulted in inhibition of cell cycle progression and increased doubling time. In AC2-expressing cells, platelet-derived growth factor (PDGF) elevated cAMP levels in a PKC-dependent manner. PDGF stimulation of mitogen-activated protein kinases 1 and 2 (MAPK 1,2), DNA synthesis, and cyclin D1 expression was reduced in AC2-expressing cells as compared with control cells. Dominant negative protein kinase A relieved the AC2 inhibition of PDGF-induced DNA synthesis. Expression of AC2 also blocked H-ras-induced transformation of NIH 3T3 cells. These observations indicate that, because AC2 is stimulated by PKC, it can be activated by PDGF concurrently with the stimulation of MAPK 1,2. The elevation in cAMP results in inhibition of signal flow from the PDGF receptor to MAPK 1,2 and a significant reduction in the proliferative response to PDGF. Thus, the molecular identity and signal receiving capability of the AC isoforms in a cell could be important for proliferative homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The E2F family of transcription factors plays a crucial role in cell cycle progression. E2F activity is tightly regulated by a number of mechanisms, which include the timely synthesis and degradation of E2F, interaction with retinoblastoma protein family members (“pocket proteins”), association with DP heterodimeric partner proteins, and phosphorylation of the E2F/DP complex. Here we report that another mechanism, subcellular localization, is important for the regulation of E2F activity. Unlike E2F-1, -2, or -3, which are constitutively nuclear, ectopic E2F-4 and -5 were predominantly cytoplasmic. Cotransfection of expression vectors encoding p107, p130, or DP-2, but not DP-1, resulted in the nuclear localization of E2F-4 and -5. Moreover, the transcriptional activity of E2F-4 was markedly enhanced when it was invariably nuclear. Conversely, it was reduced when the protein was excluded from the nucleus, implying that E2F-4 transcription function depends upon its cytological location. In keeping with this, the nuclear/cytoplasmic ratios of endogenous E2F-4 changed as cells exited G0, with high ratios in G0 and early G1 and a progressive increase in cytoplasmic E2F-4 as cells approached S phase. Thus, the subcellular location of E2F-4 is regulated in a cell cycle-dependent manner, providing another potential mechanism for its functional regulation.