364 resultados para cardiomyocytes
Resumo:
Endothelin-1 promotes cardiomyocyte hypertrophy by inducing changes in gene expression. Immediate early genes including activating transcription factor 3 (Atf3), Egr1 and Ptgs2 are rapidly and transiently upregulated by endothelin-1 in cardiomyocytes. Atf3 regulates expression of downstream genes and is implicated in negative feedback regulation of other immediate early genes. To identify Atf3-regulated genes, we knocked down Atf3 expression in cardiomyocytes exposed to endothelin-1 and used microarrays to interrogate the transcriptomic effects. Of upregulated mRNAs, expression of 23 (including Egr1, Ptgs2) was enhanced and expression of 25 was inhibited by Atf3 knockdown. Using quantitative PCR, we determined that knockdown of Atf3 had little effect on upregulation of Egr1 mRNA over 30 min, but abolished the subsequent decline, causing sustained Egr1 mRNA expression and enhanced protein expression. This resulted from direct binding of Atf3 to the Egr1 promoter. Mathematical modelling established that Atf3 can suffice to suppress Egr1 expression. Given the widespread co-regulation of Atf3 with Egr1, we suggest that the Atf3-Egr1 negative feedback loop is of general significance. Loss of Atf3 caused abnormal cardiomyocyte growth, presumably resulting from dysregulation of target genes. Our data therefore identify Atf3 as a nexus in cardiomyocyte hypertrophy required to facilitate the full and proper growth response.
Resumo:
In the heart, inflammatory cytokines including interleukin (IL) 1β are implicated in regulating adaptive and maladaptive changes, whereas IL33 negatively regulates cardiomyocyte hypertrophy and promotes cardioprotection. These agonists signal through a common co-receptor but, in cardiomyocytes, IL1β more potently activates mitogen-activated protein kinases and NFκB, pathways that regulate gene expression. We compared the effects of external application of IL1β and IL33 on the cardiomyocyte transcriptome. Neonatal rat cardiomyocytes were exposed to IL1β or IL33 (0.5, 1 or 2h). Transcriptomic profiles were determined using Affymetrix rat genome 230 2.0 microarrays and data were validated by quantitative PCR. IL1β induced significant changes in more RNAs than IL33 and, generally, to a greater degree. It also had a significantly greater effect in downregulating mRNAs and in regulating mRNAs associated with selected pathways. IL33 had a greater effect on a small, select group of specific transcripts. Thus, differences in intensity of intracellular signals can deliver qualitatively different responses. Quantitatively different responses in production of receptor agonists and transcription factors may contribute to qualitative differences at later times resulting in different phenotypic cellular responses.
Resumo:
The involvement of pertussis toxin (PTX)-sensitive and -insensitive pathways in the activation of the mitogen-activated protein kinase (MAPK) cascade was examined in ventricular cardiomyocytes cultured from neonatal rats. A number of agonists that activate heterotrimeric G-protein-coupled receptors stimulated MAPK activity after exposure for 5 min. These included foetal calf serum (FCS), endothelin-1 (these two being the most effective of the agonists examined), phenylephrine, endothelin-3, lysophosphatidic acid, carbachol, isoprenaline and angiotensin II. Activation of MAPK and MAPK kinase (MEK) by carbachol returned to control levels within 30-60 min, whereas activation by FCS was more sustained. FPLC on Mono Q showed that carbachol and FCS activated two peaks of MEK and two peaks of MAPK (p42MAPK and p44MAPK). Pretreatment of cells with PTX for 24 h inhibited the activation of MAPK by carbachol, FCS and lysophosphatidic acid, but not that by endothelin-1, phenylephrine or isoprenaline. Involvement of G-proteins in the activation of the cardiac MAPK cascade was demonstrated by the sustained (PTX-insensitive) activation of MAPK (and MEK) after exposure of cells to AlF4-. AlF4- activated PtdIns hydrolysis, as did endothelin-1, endothelin-3, phenylephrine and FCS. In contrast, the effect of lysophosphatidic acid on PtdIns hydrolysis was small and carbachol was without significant effect even after prolonged exposure. We conclude that PTX-sensitive (i.e. Gi/G(o)-linked) and PTX-insensitive (i.e. Gq/Gs-linked) pathways of MAPK activation exist in neonatal ventricular myocytes. FCS may stimulate the MAPK cascade through both pathways.
Resumo:
The extracellular signal-regulated kinases 1/2 (ERK1/2) are activated in cardiomyocytes by Gq protein-coupled receptors and are associated with induction of hypertrophy. Here, we demonstrate that, in primary cardiomyocyte cultures, ERK1/2 were also significantly activated by platelet-derived growth factor (PDGF), epidermal growth factor (EGF) or fibroblast growth factor (FGF), but insulin, insulin-like growth factor 1 (IGF-1) and nerve growth factor (NGF) had relatively minor effects. PDGF, EGF or FGF increased cardiomyocyte size via ERK1/2, whereas insulin, IGF-1 or NGF had no effect suggesting minimum thresholds/durations of ERK1/2 signaling are required for the morphological changes associated with hypertrophy. Peptide growth factors are widely accepted to activate phospholipase C gamma1 (PLCgamma1) and protein kinase C (PKC). In cardiomyocytes, only PDGF stimulated tyrosine phosphorylation of PLCgamma1 and nPKCdelta. Furthermore, activation of ERK1/2 by PDGF, but not EGF, required PKC activity. In contrast, EGF substantially increased Ras.GTP with rapid activation of c-Raf, whereas stimulation of Ras.GTP loading by PDGF was minimal and activation of c-Raf was delayed. Our data provide clear evidence for differential coupling of PDGF and EGF receptors to the ERK1/2 cascade, and indicate that a minimum threshold/duration of ERK1/2 signaling is required for the development of cardiomyocyte hypertrophy.
Resumo:
Melatonin, the pineal gland hormone, provides entrainment of many circadian rhythms to the ambient light/dark cycle. Recently, cardiovascular studies have demostrated melatonin interactions with many physiological processes and diseases, such as hypertension and cardiopathologies. Although membrane melatonin receptors (MT1, MT2) and the transcriptional factor ROR alpha have been reported to be expressed in the heart, there is no evidence of the cell-type expressing receptors as well as the possible role of melatonin on the expression of the circadian clock of cardiomyocytes, which play an important role in cardiac metabolism and function. Therefore, the aim of this study was to evaluate the mRNA and protein expressions of MT1, MT2, and ROR alpha and to determine whether melatonin directly influences expression of circadian clocks within cultured rat cardiomyocytes. Adult rat cardiomyocyte cultures were created, and the cells were stimulated with 1 nM melatonin or vehicle. Gene expressions were assayed by real-time polymerase chain reaction (PCR). The mRNA and protein expressions of membrane melatonin receptors and RORa were established within adult rat cardiomyocytes. Two hours of melatonin stimulation did not alter the expression pattern of the analyzed genes. However, given at the proper time, melatonin kept Rev-erb alpha expression chronically high, specifically 12 h after melatonin treatment, avoiding the rhythmic decline of Rev-erb alpha mRNA. The blockage of MT1 and MT2 by luzindole did not alter the observed melatonin-induced expression of Rev-erb alpha mRNA, suggesting the nonparticipation of MT1 and MT2 on the melatonin effect within cardiomyocytes. It is possible to speculate that melatonin, in adult rat cardiomyocytes, may play an important role in the light signal transduction to peripheral organs, such as the heart, modulating its intrinsic rhythmicity. (Author correspondence: cipolla@icb.usp.br)
Resumo:
Physical exercise and statins, recommended interventions to dyslipidaemia treatment, are independently related to cardiomyocytes alterations, characterized by miocardic hypertrophy and apoptosis, respectively. Thus, the objective of the present study was to analyze the effects of statin and aerobic physical exercise association in the morphometric parameters of cardiac cell nucleus. 40 male rats adults were divided into four groups: exercised (DE); sedentary (DS), exercised and statin use (DES); sedentary and statin use (DSS). The animals received during the whole experimental period a hiperlipidic diet added 20% of coconut oil and 1.25% of cholesterol; after 30 days of its ingestion, a blood collection was made to verify the dyslipidaemia. Simvastatin (20 mg) was taken five days a week, during eight weeks. During this period, the animals exercised 60 minutes daily in the treadmill. After the last day of the protocol, the cardiac muscle was collected and maintained in liquid nitrogen (-180 degrees C); the cuts were stained by Hematoxilin-Eosin method, and the cardiac fibers were submitted to the nuclear morphometric analyses. The data were analyzed using descriptive analyses, paired T test, Kruskal-Wallis test and Dunn post hoc test; for all analyses, it was adopted p<0.05. It was verified that the group receiving statin presented values statistically significant in comparison to the other groups, in the tridimensional and linear variables. The exercised and statin group, the values obtained in the morphometric analyses were similar to the control group. It is suggested that statins alone can cause alterations in the nucleus of cardiac cells that can be related to apoptosis occurrence and, when exercise is practiced associated to statin administration, the effects of statin can be reduced, what can be related to beneficial adaptations of cardiac mitochondrial in response to physical exercise, turning them more resistant to apoptotic stimuli.
Resumo:
Insulin is an important regulator of the ubiquitin-proteasome system (UPS) and of lysosomal proteolysis in cardiac muscle. However, the role of insulin in the regulation of the muscle atrophy-related Ub-ligases atrogin-1 and MuRF1 as well as in autophagy, a major adaptive response to nutritional stress, in the heart has not been characterized. We report here that acute insulin deficiency in the cardiac muscle of rats induced by streptozotocin increased the expression of atrogin-1 and MuRF1 as well as LC3 and Gabarapl1, 2 autophagy-related genes. These effects were associated with decreased phosphorylation levels of Akt and its downstream target Foxo3a; this phenomenon is a well-known effect that permits the maintenance of Foxo in the nucleus to activate protein degradation by proteasomal and autophagic processes. The administration of insulin increased Akt and Foxo3a phosphorylation and suppressed the diabetes-induced expression of Ub-ligases and autophagy-related genes. In cultured neonatal rat cardiomyocytes, nutritional stress induced by serum/glucose deprivation strongly increased the expression of Ub-ligases and autophagy-related genes; this effect was inhibited by insulin. Furthermore, the addition of insulin in vitro prevented the decrease in Akt/Foxo signaling induced by nutritional stress. These findings demonstrate that insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes, most likely through the phosphorylation of Akt and the inactivation of Foxo3a. © Georg Thieme Verlag KG.
Resumo:
This thesis investigates two distinct research topics. The main topic (Part I) is the computational modelling of cardiomyocytes derived from human stem cells, both embryonic (hESC-CM) and induced-pluripotent (hiPSC-CM). The aim of this research line lies in developing models of the electrophysiology of hESC-CM and hiPSC-CM in order to integrate the available experimental data and getting in-silico models to be used for studying/making new hypotheses/planning experiments on aspects not fully understood yet, such as the maturation process, the functionality of the Ca2+ hangling or why the hESC-CM/hiPSC-CM action potentials (APs) show some differences with respect to APs from adult cardiomyocytes. Chapter I.1 introduces the main concepts about hESC-CMs/hiPSC-CMs, the cardiac AP, and computational modelling. Chapter I.2 presents the hESC-CM AP model, able to simulate the maturation process through two developmental stages, Early and Late, based on experimental and literature data. Chapter I.3 describes the hiPSC-CM AP model, able to simulate the ventricular-like and atrial-like phenotypes. This model was used to assess which currents are responsible for the differences between the ventricular-like AP and the adult ventricular AP. The secondary topic (Part II) consists in the study of texture descriptors for biological image processing. Chapter II.1 provides an overview on important texture descriptors such as Local Binary Pattern or Local Phase Quantization. Moreover the non-binary coding and the multi-threshold approach are here introduced. Chapter II.2 shows that the non-binary coding and the multi-threshold approach improve the classification performance of cellular/sub-cellular part images, taken from six datasets. Chapter II.3 describes the case study of the classification of indirect immunofluorescence images of HEp2 cells, used for the antinuclear antibody clinical test. Finally the general conclusions are reported.
Resumo:
BACKGROUND: Mechanisms underlying improvement of myocardial contractile function after cell therapy as well as arrhythmic side effect remain poorly understood. We hypothesised that cell therapy might affect the mechanical properties of isolated host cardiomyocytes. METHODS: Two weeks after myocardial infarction (MI), rats were treated by intramyocardial myoblast injection (SkM, n=8), intramyocardial vehicle injection (Medium, n=6), or sham operation (Sham, n=7). Cardiac function was assessed by echocardiography. Cardiomyocytes were isolated in a modified Langendorff perfusion system, their contraction was measured by video-based inter-sarcomeric analysis. Data were compared with a control-group without myocardial infarction (Control, n=5). RESULTS: Three weeks post-treatment, ejection fraction (EF) further deteriorated in vehicle-injected and non-injected rats (respectively 40.7+/-11.4% to 33+/-5.5% and 41.8+/-8% to 33.5+/-8.3%), but was stabilised in SkM group (35.9+/-6% to 36.4+/-9.7%). Significant cell hypertrophy induced by MI was maintained after cell therapy. Single cell contraction (dL/dt(max)) decreased in SkM and vehicle groups compared to non-injected group as well as cell shortening and relaxation (dL/dt(min)) in vehicle group. A significantly increased predisposition for alternation of strong and weak contractions was observed in isolated cardiomyocytes of the SkM group. CONCLUSION: Our study provides the first evidence that injection of materials into the myocardium alters host cardiomyocytes contractile function independently of the global beneficial effect of the heart function. These findings may be important in understanding possible adverse effects.