200 resultados para cardiomyocyte


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation to obtain Master Degree in Biotechnology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La enfermedad de Chagas, causada por Trypanosoma cruzi, constituye la principal miocarditis infecciosa a nivel mundial. Crecientes evidencias revelan que la respuesta inmune innata tendría un rol determinante en la fisiopatología de las enfermedades cardiovasculares. La inmunidad innata es la primera línea de defensa, no específica, preprogramada para combatir agentes infecciosos. Este sistema censa la presencia de antígenos extraños a través de los receptores tipo toll (TLR) produciendo citoquinas y activando mecanismos microbicidas. Sin embargo, los TLRs también se hayan distribuidos en las células parenquimales no inmunes, jugando un importante rol tanto en la defensa como en la homeostasis de cada tejido. Durante la etapa aguda de la infección, el T. cruzi invade y se replica dentro de una amplia variedad de células y tejidos. Pero posteriormente, los parásitos son efectivamente eliminados de la mayoría de los tejidos persistiendo durante toda la vida en las células del músculo cardíaco y esquelético de los pacientes infectados. Debido a que el mantenimiento de la célula cardíaca infectada es crítica para la patogénesis de la enfermedad, los mecanismos que participan en la sobrevida de los cardiomiocitos están siendo foco de nuestro estudio. Hemos demostrado, que la infección ejerce efectos antiapoptóticos sobre células cardíacas aisladas. Nuestra hipótesis es que la inmunidad innata cardíaca estaría involucrada en el mantenimiento de la sobrevida de los miocitos así como en la defensa contra el parásito. Objetivo general: determinar la participación de la respuesta inmune innata cardíaca en el desarrollo de la enfermedad de Chagas experimental murina. Objetivos específicos: 1) Analizar el compromiso de TLRs en la respuesta anti-apoptótica y de autofagia de cardiomiocitos aislados de ratones salvajes y de ratones deficientes en TLR4, TLR2 y en MyD88, molécula adaptadora de la señalización por TLRs, sometidos a la infección con el parásito. 2) Determinar la importancia de la actividad cisteín proteasa parasitaria en el grado de infectividad y la sobrevida de cultivos primarios de ratones salvajes infectados con parásitos transgénicos que poseen disminuída o nula actividad cisteín proteasa. 3) Establecer la cinética de expresión de TLR2/TLR6, TLR4 y TLR9, factores antiapoptóticos (Bcl-2, Bcl-xL, etc.), daño cardíaco y la carga parasitaria en el tejido cardíaco de ratones infectados salvajes y/o deficientes antes mencionados. Materiales y Métodos: Los animales serán infectados i.p. con 5x103 parásitos y se determinará la cinética de expresión de los mediadores mencionados por western blot e inmunofluorescencia, la carga parasitaria será determinada por qRT-PCR. Como controles se procesarán animales inyectados con solución salina. En cultivos primarios de cardiomiocitos de ratones neonatos salvajes y deficientes infectados se estudiará la carga parasitaria, la activación de los mecanismos microbicidas (producción de óxido nítrico, metabolitos reactivos del oxígeno y del nitrógeno, ciclooxigenasa, etc.), producción de citoquinas y expresión de moléculas anti-apoptóticas (Bcl-2, Bcl-xL, Bax, etc.). Se explorará la tasa de apoptosis en cultivos deprivados de suero. La autofagia se analizará por microscopia electrónica. Cultivos controles serán mantenidos en medio o tratados con ligandos de los diferentes TLRs. Resultados preliminares sugieren que tanto TLR2 como Bcl-2 se incrementan en tejido cardíaco infectado. Esto nos lleva a profundizar en los mecanismos observados en cultivos y estudiarlos en un modelo in vivo, analizando la posible importancia que tiene la inmunidad innata cardíaca en el control del establecimiento de la infección. La comprensión de los mecanismos que mantienen la sobrevida de los cardiomiocitos y su respuesta a la infección es importante ya que el conocimiento de las bases moleculares es fundamental para el desarrollo de nuevos agentes quimioterapéuticos. Chagas disease is endemic in Central and South America and causes the most common myocarditis worldwide. We have previously reported that the cardiotrophic parasite Trypanosoma cruzi, its etiological agent, protects cardiomyocytes against apoptosis induced by growth factor deprivation activating the PI3K/Akt and MEK1/ERK signaling pathways. Recent studies have shown that local innate immunity plays a key role in initiating and coordinating homeostatic as well as defense responses in the heart. One of the mechanisms by which the innate immune system senses the presence of foreign antigens is through TLRs. The stimulation of these receptors leads to the activation and nuclear translocation of NF-kB transcription factor and the production of cytokines. Proinflammatory cytokines, in turn, appear to play a central role in the orchestration and timing of the intrinsic cardiac stress response providing, under different situations, instantaneous anti-apoptotic cytoprotective signals, which allow tissue repair and/or remodeling. The aim of the present project is to study the cardiomyocyte innate immune responses to T. cruzi infection and its role in target cell protection from apoptosis. Specific objectives: 1) Study the mechanism triggered by TLR in the anti-apoptotic response and parasite load of infected cardiomyocyte primary cultures from wild type and mice deficient in TLR2, TLR4 or MyD88. 2) Determine the effect of parasite cisteín protease activity on primary cultures from wild type mice. 3) Determine the TLR signaling-involvement in parasite load and survival indicators in deficient mice. Preliminary results showed us that cardiac-TLR2 may be involved in the anti-apoptotic effect elicited by the parasite and prompted us to establish the mechanisms triggered by the innate immunity that mediate parasite persistence within the host cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractBackground:Although nutritional, metabolic and cardiovascular abnormalities are commonly seen in experimental studies of obesity, it is uncertain whether these effects result from the treatment or from body adiposity.Objective:To evaluate the influence of treatment and body composition on metabolic and cardiovascular aspects in rats receiving high saturated fat diet.Methods:Sixteen Wistar rats were used, distributed into two groups, the control (C) group, treated with isocaloric diet (2.93 kcal/g) and an obese (OB) group, treated with high-fat diet (3.64 kcal/g). The study period was 20 weeks. Analyses of nutritional behavior, body composition, glycemia, cholesterolemia, lipemia, systolic arterial pressure, echocardiography, and cardiac histology were performed.Results:High-fat diet associates with manifestations of obesity, accompanied by changes in glycemia, cardiomyocyte hypertrophy, and myocardial interstitial fibrosis. After adjusting for adiposity, the metabolic effects were normalized, whereas differences in morphometric changes between groups were maintained.Conclusion:It was concluded that adiposity body composition has a stronger association with metabolic disturbances in obese rodents, whereas the high-fat dietary intervention is found to be more related to cardiac morphological changes in experimental models of diet-induced obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: Although the beneficial effects of resistance training (RT) on the cardiovascular system are well established, few studies have investigated the effects of the chronic growth hormone (GH) administration on cardiac remodeling during an RT program. Objective: To evaluate the effects of GH on the morphological features of cardiac remodeling and Ca2+ transport gene expression in rats submitted to RT. Methods: Male Wistar rats were divided into 4 groups (n = 7 per group): control (CT), GH, RT and RT with GH (RTGH). The dose of GH was 0.2 IU/kg every other day for 30 days. The RT model used was the vertical jump in water (4 sets of 10 jumps, 3 bouts/wk) for 30 consecutive days. After the experimental period, the following variables were analyzed: final body weight (FBW), left ventricular weight (LVW), LVW/FBW ratio, cardiomyocyte cross-sectional area (CSA), collagen fraction, creatine kinase muscle-brain fraction (CK-MB) and gene expressions of SERCA2a, phospholamban (PLB) and ryanodine (RyR). Results: There was no significant (p > 0.05) difference among groups for FBW, LVW, LVW/FBW ratio, cardiomyocyte CSA, and SERCA2a, PLB and RyR gene expressions. The RT group showed a significant (p < 0.05) increase in collagen fraction compared to the other groups. Additionally, the trained groups (RT and RTGH) had greater CK-MB levels compared to the untrained groups (CT and GH). Conclusion: GH may attenuate the negative effects of RT on cardiac remodeling by counteracting the increased collagen synthesis, without affecting the gene expression that regulates cardiac Ca2+ transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Dilated cardiomyopathy (DCM) is a leading cause of chronic morbidity and mortality in muscular dystrophy (MD) patients. Current pharmacological treatments are not yet able to counteract chronic myocardial wastage, thus novel therapies are being intensely explored. MicroRNAs have been implicated as fine regulators of cardiomyopathic progression. Previously, miR-669a downregulation has been linked to the severe DCM progression displayed by Sgcb-null dystrophic mice. However, the impact of long-term overexpression of miR-669a on muscle structure and functionality of the dystrophic heart is yet unknown. METHODS AND RESULTS: Here, we demonstrate that intraventricular delivery of adeno-associated viral (AAV) vectors induces long-term (18 months) miR-669a overexpression and improves survival of Sgcb-null mice. Treated hearts display significant decrease in hypertrophic remodeling, fibrosis, and cardiomyocyte apoptosis. Moreover, miR-669a treatment increases sarcomere organization, reduces ventricular atrial natriuretic peptide (ANP) levels, and ameliorates gene/miRNA profile of DCM markers. Furthermore, long-term miR-669a overexpression significantly reduces adverse remodeling and enhances systolic fractional shortening of the left ventricle in treated dystrophic mice, without significant detrimental consequences on skeletal muscle wastage. CONCLUSIONS: Our findings provide the first evidence of long-term beneficial impact of AAV-mediated miRNA therapy in a transgenic model of severe, chronic MD-associated DCM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although chronic hypoxia is a claimed myocardial risk factor reducing tolerance to ischemia/reperfusion (I/R), intermittent reoxygenation has beneficial effects and enhances heart tolerance to I/R. AIM OF THE STUDY: To test the hypothesis that, by mimicking intermittent reoxygenation, selective inhibition of phosphodiesterase-5 activity improves ischemia tolerance during hypoxia. Adult male Sprague-Dawley rats were exposed to hypoxia for 15 days (10% O₂) and treated with placebo, sildenafil (1.4 mg/kg/day, i. p.), intermittent reoxygenation (1 h/day exposure to room air) or both. Controls were normoxic hearts. To assess tolerance to I/R all hearts were subjected to 30-min regional ischemia by left anterior descending coronary artery ligation followed by 3 h-reperfusion. Whereas hypoxia depressed tolerance to I/R, both sildenafil and intermittent reoxygenation reduced the infarct size without exhibiting cumulative effects. The changes in myocardial cGMP, apoptosis (DNA fragmentation), caspase-3 activity (alternative marker for cardiomyocyte apoptosis), eNOS phosphorylation and Akt activity paralleled the changes in cardioprotection. However, the level of plasma nitrates and nitrites was higher in the sildenafil+intermittent reoxygenation than sildenafil and intermittent reoxygenation groups, whereas total eNOS and Akt proteins were unchanged throughout. CONCLUSIONS: Sildenafil administration has the potential to mimic the cardioprotective effects led by intermittent reoxygenation, thereby opening the possibility to treat patients unable to be reoxygenated through a pharmacological modulation of NO-dependent mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the damaged heart, cardiac adaptation relies primarily on cardiomyocyte hypertrophy. The recent discovery of cardiac stem cells in the postnatal heart, however, suggests that these cells could participate in the response to stress via their capacity to regenerate cardiac tissues. Using models of cardiac hypertrophy and failure, we demonstrate that components of the Notch pathway are up-regulated in the hypertrophic heart. The Notch pathway is an evolutionarily conserved cell-to-cell communication system, which is crucial in many developmental processes. Notch also plays key roles in the regenerative capacity of self-renewing organs. In the heart, Notch1 signaling takes place in cardiomyocytes and in mesenchymal cardiac precursors and is activated secondary to stimulated Jagged1 expression on the surface of cardiomyocytes. Using mice lacking Notch1 expression specifically in the heart, we show that the Notch1 pathway controls pathophysiological cardiac remodeling. In the absence of Notch1, cardiac hypertrophy is exacerbated, fibrosis develops, function is altered, and the mortality rate increases. Therefore, in cardiomyocytes, Notch controls maturation, limits the extent of the hypertrophic response, and may thereby contribute to cell survival. In cardiac precursors, Notch prevents cardiogenic differentiation, favors proliferation, and may facilitate the expansion of a transient amplifying cell compartment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Chagas disease, understanding how the immune response controls parasite growth but also leads to heart damage may provide insight into the design of new therapeutic strategies. Tumor necrosis factor-alpha (TNF-α) is important for resistance to acute Trypanosoma cruzi infection; however, in patients suffering from chronic T. cruzi infection, plasma TNF-α levels correlate with cardiomyopathy. Recent data suggest that CD8-enriched chagasic myocarditis formation involves CCR1/CCR5-mediated cell migration. Herein, the contribution of TNF-α, especially signaling through the receptor TNFR1/p55, to the pathophysiology of T. cruzi infection was evaluated with a focus on the development of myocarditis and heart dysfunction. Colombian strain-infected C57BL/6 mice had increased frequencies of TNFR1/p55+ and TNF-α+ splenocytes. Although TNFR1-/- mice exhibited reduced myocarditis in the absence of parasite burden, they succumbed to acute infection. Similar to C57BL/6 mice, Benznidazole-treated TNFR1-/- mice survived acute infection. In TNFR1-/- mice, reduced CD8-enriched myocarditis was associated with defective activation of CD44+CD62Llow/- and CCR5+ CD8+ lymphocytes. Also, anti-TNF-α treatment reduced the frequency of CD8+CCR5+ circulating cells and myocarditis, though parasite load was unaltered in infected C3H/HeJ mice. TNFR1-/- and anti-TNF-α-treated infected mice showed regular expression of connexin-43 and reduced fibronectin deposition, respectively. Furthermore, anti-TNF-α treatment resulted in lower levels of CK-MB, a cardiomyocyte lesion marker. Our results suggest that TNF/TNFR1 signaling promotes CD8-enriched myocarditis formation and heart tissue damage, implicating the TNF/TNFR1 signaling pathway as a potential therapeutic target for control of T. cruzi-elicited cardiomyopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In response to pathological stresses, the heart undergoes a remodelling process associated with cardiac hypertrophy. Since sustained hypertrophy can progress to heart failure, there is an intense investigation about the intracellular signalling pathways that control cardiomyocyte growth. Accumulating evidence has demonstrated that most stimuli known to initiate pathological changes associated with the development of cardiac hypertrophy activate G protein-coupled receptors (GPCRs) including the αl-adrenergic- (αl-AR), Angiotensin II- (AT-R) and endothelin-1- (ET-R) receptors. In this context, we have previously identified a cardiac scaffolding protein, called AKAP-Lbc (Α-kinase anchoring protein), with an intrinsic Rho specific guanine nucleotide exchange factor activity, that plays a key role in integrating and transducing hypertrophic signals initiated by these GPCRs (Appert-Collin, Cotecchia et al. 2007). Activated RhoA controls the transcriptional activation of genes involved in cardiomyocyte hypertrophy through signalling pathways that remain to be characterized. Here, we identified the nuclear factor-Kappa Β (NF-κΒ) activating kinase ΙΚΚβ as a novel AKAP-Lbc interacting protein. This raises the hypothesis that AKAP-Lbc might promote cardiomyocyte growth by maintaining a signalling complex that promotes the activation of the pro-hypertrophic transcription factor NF-κΒ. In fact, the activation of NF- κΒ-dependent transcription has been detected in numerous disease contexts, including hypertrophy, ischemia/reperfusion injury, myocardial infarction, allograft rejection, myocarditis, apoptosis, and more (Hall, Hasday et al. 2006). While it is known by more than a decade that NF-κΒ is a critical mediator of cardiac hypertrophy, it is currently poorly understood how pro-hypertrophic signals controlling NF-κΒ transcriptional activity are integrated and coordinated within cardiomyocytes. In this study, we show that AKAP-Lbc and ΙΚΚβ form a transduction complex in cardiomyocytes that couples activation of αl-ARs to NF-κB-mediated transcriptional reprogramming events associated with cardiomyocyte hypertrophy. In particular, we can show that activation of ΙΚΚβ within the AKAP-Lbc complex promotes NF-κB-dependent production of interleukine-6 (IL-6), which, in turn, enhances foetal gene expression. These findings indicate that the AKAP-Lbc/ΙΚΚβ complex is critical for selectively directing catecholamine signals to the induction of cardiomyocyte hypertrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past two decades, inflammation has emerged as a key pathophysiological process during myocardial infarction. It develops consecutively to the activation of innate immune defense mechanisms, in response to the release of endogenous molecules by necrotic cells and the extracellular matrix. These danger signals are sensed by cellular receptors normally involved in antimicrobial defenses, including toll-like receptors and a subset of NOD-like receptors, which promote intracellular signaling dependent on nuclear factor kappaB and on the formation of the inflammasome. These mechanisms stimulate the expression of multiple inflammatory mediators and growth factors, sequentially inducing the recruitment of inflammatory cells, the clearance of injured tissue, angiogenesis, and the proliferation of fibroblasts, eventually resulting in scar formation and infarct healing. Dysregulation of these responses may result in continued cardiomyocyte loss, fibrosis beyond the limits of the infarcted area, reactive hypertrophy and chamber dilatation, a process termed adverse cardiac remodeling, leading to functional compromise and heart failure. This review presents the current state of knowledge on the process of immune activation within the infarcted myocardium and its consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chagas disease, caused by the intracellular protozoan Trypanosoma cruzi, is a serious health problem in Latin America. During this parasitic infection, the heart is one of the major organs affected. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. When cells are infected with T. cruzi, they develop an inflammatory response, in which cyclooxygenase-2 (COX-2) catalyses rate-limiting steps in the arachidonic acid pathway. However, how the parasite interaction modulates COX-2 activity is poorly understood. In this study, the H9c2 cell line was used as our model and we investigated cellular and biochemical aspects during the initial 48 h of parasitic infection. Oscillatory activity of COX-2 was observed, which correlated with the control of the pro-inflammatory environment in infected cells. Interestingly, subcellular trafficking was also verified, correlated with the control of Cox-2 mRNA or the activated COX-2 protein in cells, which is directly connected with the assemble of stress granules structures. Our collective findings suggest that in the very early stage of the T. cruzi-host cell interaction, the parasite is able to modulate the cellular metabolism in order to survives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chagas disease, which is caused by the intracellular protozoanTrypanosoma cruzi, is a serious health problem in Latin America. The heart is one of the major organs affected by this parasitic infection. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection, and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. Previous studies have reported that the establishment of parasitism is connected to the activation of the phosphatidylinositol-3 kinase (PI3K), which controls important steps in cellular metabolism by regulating the production of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Particularly, the tumour suppressor PTEN is a negative regulator of PI3K signalling. However, mechanistic details of the modulatory activity of PTEN on Chagas disease have not been elucidated. To address this question, H9c2 cells were infected with T. cruzi Berenice 62 strain and the expression of a specific set of microRNAs (miRNAs) were investigated. Our cellular model demonstrated that miRNA-190b is correlated to the decrease of cellular viability rates by negatively modulating PTEN protein expression in T. cruzi-infected cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In response to chronic stress the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy, increased cellular apoptosis and fibrosis, which ultimately causes cardiac dysfunction and heart failure. Increasing evidence suggest the role of scaffolding and anchoring proteins in coordinating different signaling pathways that mediate the hypertrophic response of the heart. In this context, the family of Α-kinase anchoring proteins (AKAPs) emerged as important regulators of the cardiac function. During my thesis work I have conducted two independent projects, both of them aiming at elucidating the role of AKAPs in the heart. It has been shown that AKAP-Lbc, an anchoring protein that possesses an intrinsic Rho- specific exchange factor activity, organizes a signaling complex that links AKAP-Lbc- dependent activation of RhoA with the mitogen activated protein kinase (MAPK) p38. The first aim of my thesis was to study the role of this novel transduction pathway in the context of cardiac hypertrophy. Here we show that transgenic mice overexpressing in cardiomyocytes a competitor fragment of AKAP-Lbc, which specifically disrupts endogenous AKAP-Lbc / p38 complexes, developed early dilated cardiomyopathy in response to two weeks of transverse aortic constriction (TAC) as compared to controls. Interestingly, inhibition of the AKAP-Lbc / p38 transduction pathway significantly reduced the hypertrophic growth of single cardiomyocytes induced by pressure overload. Therefore, it appears that the AKAP- Lbc / p38 complex is crucially involved in the regulation of stress-induced cardiomyocyte hypertrophy and that disruption of this signaling pathway is detrimental for the heart under conditions of sustained hemodynamic stress. Secondly, in order to identify new AKAPs involved in the regulation of cardiac function, we followed a proteomic approach which allowed us to characterize AKAP2 as a major AKAP in the heart. Importantly, here we show that AKAP2 interacts with several proteins known to be involved in the control of gene transcription, such as the nuclear receptor coactivator 3 (NCoA3) or the ATP-dependent SWI/SNF chromatin remodeling complex. Thus, we propose AKAP2 as a novel mediator of cardiac gene expression through its interaction with these transcriptional regulators.