874 resultados para carbon fibre polymers


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic compressive response of corrugated carbon-fibre reinforced epoxy sandwich cores has been investigated using a Kolsky-bar set-up. Compression at quasi-static rates up to v 0=200ms -1 have been tested on three different slenderness ratios of strut. High speed photography was used to capture the failure mechanisms and relate these to the measured axial compressive stress. Experiments show significant strength enhancement as the loading rate increases. Although material rate sensitivity accounts for some of this, it has been shown that the majority of the strength enhancement is due to inertial stabilisation of the core members. Inertial strength enhancement rises non-linearly with impact velocity. The largest gains are associated with a shift to buckle modes composed of 2-3 half sine waves. The loading rates tested within this study are similar to those that are expected when a sandwich core is compressed due to a blast event. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, electrode responses to a large number of electroactive species with different standard potentials at the molybdenum oxide-modified carbon fibre microdisk array (CFMA) electrode were investigated. The results demonstrated that the electrochemical behavior for those redox species with formal potentials more positive than similar to 0.0 V at the molybdenum oxide-modified CFMA electrode were affected by the range and direction of the potential scan, which were different from that at a bare CFMA electrode. If the lower limit of the potential scan was more positive than the reduction potential of the molybdenum oxide film, neither the oxidation nor the reduction peaks of the redox species tested could be observed. This indicates that electron transfer between the molybdenum oxide film on the electrode and the electroactive species in solution is blocked due to the existence of a high resistance between the film and electrolyte in these potential ranges. If the lower limit of the potential scan was more negative than the reduction potential of the molybdenum oxide film (similar to - 0.6 V), the oxidation peaks of these species occurred at the potentials near their formal potentials. In addition, the electrochemical behavior of these redox species at the molybdenum oxide-modified CFMA electrode showed a diffusionless electron transfer process. On the other hand, the redox species with formal potentials more negative than similar to - 0.2 V showed similar reversible voltammetric behaviors at both the molybdenum oxide-modified CFMA electrode and the bare electrode. This can be explained by the structure changes of the film before and after reduction of the film. In addition we also observed that the peak currents of some redox species at the modified electrode were much larger than those at a bare electrode under the same conditions, which has been explained by the interaction between these redox species and the reduction state of the molybdenum oxide film. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of carbon fibre composites is growing in many sectors but their use remains stronger in very high value industries such as aerospace where the demands of the application more easily justify the high energy input needed and the corresponding costs incurred. This energy and cost input is returned through gains over the whole life of the product, with for example, longer maintenance intervals for an aircraft and lower fuel burn. Thermoplastic composites however have a different energy and cost profile compared to traditional thermosets with notable differences in recyclability, but this profile is not well quantified or documented. This study considers the key process control parameters and identifies an optimal window for processing, along with the effect this has on the final characteristics of the manufactured parts. Interactions between parameters and corresponding sensitivities are extracted from the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of a combined experimental and numerical study of hat-stiffened co-cured carbon-fibre composite panels loaded in uniaxial compression are presented. All panels consisted of two integrated stiffeners separated by an eight-ply thick skin bay of lay-up [*45/0190], . The effects of a 100 mm circular cutout in the skin was also investigated. The ultimate strength of all panels was governed by the load carrying capacity of the stiffeners. A change in the skin's buckling mode-shape was also observed for all panels loaded deep in the postbuckling region. The strains induced at the interior free-edge were not found to be critical. Non-linear finite element results correlated well with the prebuckling and initial postbuckling strain and displacements results obtained by experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pre-consolidated carbon fibre-reinforced polyphenylene sulphide (CF/PPS) laminates were
thermoformed into V-shaped parts via designed out of autoclave thermoforming experiments.
The different processing conditions tested in the experiment have resulted in final
part angles whose differences ranged from 2.087 to 3.431 from the original mould angle.
The test results show that processing conditions influenced finished part dimensions as the
final sample angles were found to decrease relative to the tooling dimensions, as mould
temperature increases. Higher mould temperature conditions produce thinner parts due
to the thermal expansion of mould tools. The mould temperature of 170C, which can
produce parts with high degree of crystallinity as well as small size of crystal, has been
established as the optimal thermoforming condition for CF/PPS composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the increased applications of the composite materials in aerospace due to their exceptional physical and mechanical properties, the machining of composites remains a challenge. Fibre reinforced laminated composites are prone to different damages during machining process such as delamination, fibre pull-out, microcracks, thermal damages. Optimization of the drilling process parameters can reduces the probability of these damages. In the current research, a 3D finite element (FE) model is developed of the process of drilling in the carbon fibre reinforced composite (CFC). The FE model is used to investigate the effects of cutting speed and feed rate on thrust force, torque and delamination in the drilling of carbon fiber reinforced laminated composite. A mesoscale FE model taking into account of the different oriented plies and interfaces has been proposed to predict different damage modes in the plies and delamination. For validation purposes, experimental drilling tests have been performed and compared to the results of the finite element analysis. Using Matlab a digital image analysis code has been developed to assess the delamination factor produced in CFC as a result of drilling. © Springer Science+Business Media B.V. 2011.