1000 resultados para capsule dynamics
Resumo:
There is a great need of research to assess the behavior of micronutrients in natural forests of southern Brazil. Do to this need, the objective of this work was to study the levels and amounts of micronutrients in forest above ground biomass of the forest, in a comparative way, in two secondary succession stages (SSS) in a Seasonal Deciduous Forest in Rio Grande do Sul, Brazil. The SSS had enjoyed 35 and 55 years of regeneration since the end of agricultural use, respectively for initial secondary forest (ISF) and late secondary forest (LSF). The above-ground biomass was collected and separated into vegetative strata and these in fractions, thereafter chemically analyzed for the levels of B, Fe, Zn, Mn and Cu. Leaf fractions of arboreal, shrubs and herbaceous strata showed the highest levels for most nutrients. Only the levels of iron and manganese were higher in the bark fraction, for both sucession stages. In the LSF, the herbaceous stratum also showed high levels of Fe. The average levels of micronutrients showed differences between the two sucession stages only in relation to Fe and Mn, with higher levels in LSF biomass. The amount of nutrients stored was always higher in LSF, because of the largest biomass and the higher levels of Fe and Mn in the biomass of this SSS. The quantitative order of nutrient storage in biomass was Fe> Mn> Zn> B> Cu.
Resumo:
In this work, we have used molecular dynamics, density functional theory, virtual screening, ADMET predictions, and molecular interaction field studies to design and propose eight novel potential inhibitors of CDK2. The eight molecules proposed showed interesting structural characteristics that are required for inhibiting the CDK2 activity and show potential as drug candidates for the treatment of cancer. The parameters related to the Rule of Five were calculated, and only one of the molecules violated more than one parameter. One of the proposals and one of the drug-like compounds selected by virtual screening indicated to be promising candidates for CDK2-based cancer therapy.
Resumo:
The feasibility of characterizing the dynamics of a spouted bed based on acoustic emission (AE) signals is evaluated. Acoustic emission signals were measured in a semi-cylindrical Plexiglas column of diameter 150 mm and height 1000 mm with a conical base of internal angle 60 degrees and 25 mm inlet orifice diameter. Data were obtained for U/U(ms), from 0.3 to 2.0, static bed height from 250 to 500 mm, and glass beads of diameter 1.2 and 2.4 mm. AE signals reflected the effects of particle size and U/U(ms), but in general were insensitive to bed depth, even when there were drastic changes in spouting flow patterns. The results indicate that the AE signals were insensitive to the spouted bed hydrodynamics for the conditions studied. Overall, it appears that the AE analysis is unlikely to be a suitable technique for discriminating spouted bed flow regimes, at least for the range of frequencies and operating conditions investigated.
Resumo:
Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson`s disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.
Resumo:
The calculation of quantum dynamics is currently a central issue in theoretical physics, with diverse applications ranging from ultracold atomic Bose-Einstein condensates to condensed matter, biology, and even astrophysics. Here we demonstrate a conceptually simple method of determining the regime of validity of stochastic simulations of unitary quantum dynamics by employing a time-reversal test. We apply this test to a simulation of the evolution of a quantum anharmonic oscillator with up to 6.022×1023 (Avogadro's number) of particles. This system is realizable as a Bose-Einstein condensate in an optical lattice, for which the time-reversal procedure could be implemented experimentally.
Resumo:
We analyze the dynamics of a dilute, trapped Bose-condensed atomic gas coupled to a diatomic molecular Bose gas by coherent Raman transitions. This system is shown to result in a new type of “superchemistry,” in which giant collective oscillations between the atomic and the molecular gas can occur. The phenomenon is caused by stimulated emission of bosonic atoms or molecules into their condensate phases.
Resumo:
The simplest model of three coupled Bose-Einstein condensates is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean-field approximation. This semiclassical analysis, using system symmetries, shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points, and our analysis shows that the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, and undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays a dynamical transition. The quantum case has collapse and revival sequences superimposed on the semiclassical dynamics, reflecting the underlying discreteness of the spectrum. Nonzero circular current states are also demonstrated as one of the higher-dimensional effects displayed in this system.
Resumo:
We present the first dynamical analysis of a galaxy cluster to include a large fraction of dwarf galaxies. Our sample of 108 Fornax Cluster members measured with the UK Schmidt Telescope FLAIR-II spectrograph contains 55 dwarf galaxies (15.5 > b(j) > 18.0 or -16 > M-B > -13.5). H alpha emission shows that of the dwarfs are star forming, twice the fraction implied by morphological classifications. The total sample has a mean velocity of 1493 +/- 36 kms s(-1) and a velocity dispersion of 374 +/- 26 km s(-1). The dwarf galaxies form a distinct population: their velocity dispersion (429 +/- 41 km s(-1)) is larger than that of the giants () at the 98% confidence level. This suggests that the dwarf population is dominated by infalling objects whereas the giants are virialized. The Fornax system has two components, the main Fornax Cluster centered on NGC 1399 with cz = 1478 km s(-1) and sigma (cz) = 370 km s(-1) and a subcluster centered 3 degrees to the southwest including NGC 1316 with cz = 1583 km s(-1) and sigma (cz) = 377 km s(-1). This partition is preferred over a single cluster at the 99% confidence level. The subcluster, a site of intense star formation, is bound to Fornax and probably infalling toward the cluster core for the first time. We discuss the implications of this substructure for distance estimates of the Fornax Cluster. We determine the cluster mass profile using the method of Diaferio, which does not assume a virialized sample. The mass within a projected radius of 1.4 Mpc is (7 +/- 2) x 10(13) M-., and the mass-to-light ratio is 300 +/- 100 M-./L-.. The mass is consistent with values derived from the projected mass virial estimator and X-ray measurements at smaller radii.
Resumo:
Wolbachia pipientis is an intracellular bacterial parasite of arthropods that enhances its transmission by manipulating host reproduction, most commonly by inducing cytoplasmic incompatibility. The discovery of isolates with modified cytoplasmic incompatibility phenotypes and others with novel virulence properties is an indication of the potential breadth of evolutionary strategies employed by Wolbachia.
Resumo:
The transient statistics of a gain-switched coherently pumped class-C laser displays a linear correlation between the first passage time and subsequent peak intensity. Measurements are reported showing a positive or negative sign of this linear correlation, controlled through the switching time and the laser detuning. Further measurements of the small-signal laser gain combined with calculations involving a three-level laser model indicate that this sign fundamentally depends upon the way the laser inversion varies during the gain switching, despite the added dynamics of the laser polarization in the class-C laser. [S1050-2947(97)07112-6].
Resumo:
Spin glasses are magnetic systems with conflicting and random interactions between the individual spins. The dynamics of spin glasses, as of structural glasses, reflect their complexity. Both in experimental and numerical work the relaxation below the freezing temperature depends strongly on the annealing conditions (aging) and, above the freezing point, relaxation in equilibrium is slow and non-exponential, In this Forum, observed characteristics of the dynamics were summarized and the physical models proposed to explain them were outlined. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Algorithms for explicit integration of structural dynamics problems with multiple time steps (subcycling) are investigated. Only one such algorithm, due to Smolinski and Sleith has proved to be stable in a classical sense. A simplified version of this algorithm that retains its stability is presented. However, as with the original version, it can be shown to sacrifice accuracy to achieve stability. Another algorithm in use is shown to be only statistically stable, in that a probability of stability can be assigned if appropriate time step limits are observed. This probability improves rapidly with the number of degrees of freedom in a finite element model. The stability problems are shown to be a property of the central difference method itself, which is modified to give the subcycling algorithm. A related problem is shown to arise when a constraint equation in time is introduced into a time-continuous space-time finite element model. (C) 1998 Elsevier Science S.A.
Resumo:
The nutrient contents and accessions in litterfall over a period of 3 y are reported for undisturbed areas and at two sites disturbed by selective harvesting in tropical rain forest in North Queensland, Australia. Mean concentrations (mg g(-1) dry weight) of nutrients in litterfall ranged from 10 to 12 for nitrogen; 0.33 to 0.43 for phosphorus; 3.6 to 4.3 for potassium; 6.0 to 10.5 for calcium and 1.7 to 2.6 for magnesium. These concentrations are in the middle to lower part of the spectrum of values recorded for tropical forest. Accessions of nutrients in litterfall (kg ha(-1) y(-1)) ranged from 59 to 64 N; 1.9 to 2.4 P; 20 to 24K; 34 to 63 Ca; and 9 to 16 Mg. These rates, particularly for IN and P, are among the lowest recorded for tropical forests. There were no consistent between-site differences in total nutrient accessions in small litterfall. In terms of the contribution of litterfall to the accessions of nutrients to the forest floor, this suggests that the logged sites have recovered from the effects of selective harvesting within 25 y. Nutrient accessions at each site were distinctly seasonal, with maximum accessions occurring in the late dry season to late in the wet season. Leaf-fall accounted for the largest proportion of nutrient accessions over the study period, although at certain times accessions in both reproductive material and wood were significant. A cyclone which crossed the coast near the study sites resulted in large nutrient accessions over a short period but had little effect on the total annual accession. A comparison with previous studies of litterfall in Australian tropical rainforests indicates that nutrient return in litterfall is directly related to soil fertility.
Resumo:
Six right-handed subjects performed rhythmic flexion and extension movements of the index finger in time with an auditory metronome. On each block of trials, the wrist of the response hand was placed in a extended, neutral or flexed position. In the flex-on-the-beat condition, subjects were instructed to coordinate maximum excursion in the direction of finger flexion with each beat of the metronome. In the extend-on-the-beat condition, subjects were instructed to coordinate maximum excursion in the direction of finger extension with each beat of the metronome. The frequency of the metronome was increased from 2.00 Hz to 3.75 Hz in 8 steps (8 s epochs) of 0.25 Hz. During trials prepared in the extend-on-the-beat pattern, all subjects exhibited transitions to either a flex-on-the-beat pattern or to phase wandering as the frequency of pacing was increased. The time at which these transitions occurred was reliably influenced by the position of the wrist. Four subjects exhibited qualitative departures from the flex-on-the-beat pattern at pacing frequencies that were greater than those at which the extend-on-the-beat pattern could be maintained. The lime at which these departures occurred was not influenced by the position of the wrist. These results are discussed with reference to the constraints imposed on the coordination dynamics by the intrinsic properties of the neuromuscular-skeletal system.