969 resultados para camera motion estimation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An overview is given of a vision system for locating, recognising and tracking multiple vehicles, using an image sequence taken by a single camera mounted on a moving vehicle. The camera motion is estimated by matching features on the ground plane from one image to the next. Vehicle detection and hypothesis generation are performed using template correlation and a 3D wire frame model of the vehicle is fitted to the image. Once detected and identified, vehicles are tracked using dynamic filtering. A separate batch mode filter obtains the 3D trajectories of nearby vehicles over an extended time. Results are shown for a motorway image sequence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motion estimation is the main responsible for data reduction in digital video encoding. It is also the most computational damanding step. H.264 is the newest standard for video compression and was planned to double the compression ratio achievied by previous standards. It was developed by the ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts Group (MPEG) as the product of a partnership effort known as the Joint Video Team (JVT). H.264 presents novelties that improve the motion estimation efficiency, such as the adoption of variable block-size, quarter pixel precision and multiple reference frames. This work defines an architecture for motion estimation in hardware/software, using a full search algorithm, variable block-size and mode decision. This work consider the use of reconfigurable devices, soft-processors and development tools for embedded systems such as Quartus II, SOPC Builder, Nios II and ModelSim

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays several electronics devices support digital videos. Some examples of these devices are cellphones, digital cameras, video cameras and digital televisions. However, raw videos present a huge amount of data, millions of bits, for their representation as the way they were captured. To store them in its primary form it would be necessary a huge amount of disk space and a huge bandwidth to allow the transmission of these data. The video compression becomes essential to make possible information storage and transmission. Motion Estimation is a technique used in the video coder that explores the temporal redundancy present in video sequences to reduce the amount of data necessary to represent the information. This work presents a hardware architecture of a motion estimation module for high resolution videos according to H.264/AVC standard. The H.264/AVC is the most advanced video coder standard, with several new features which allow it to achieve high compression rates. The architecture presented in this work was developed to provide a high data reuse. The data reuse schema adopted reduces the bandwidth required to execute motion estimation. The motion estimation is the task responsible for the largest share of the gains obtained with the H.264/AVC standard so this module is essential for final video coder performance. This work is included in Rede H.264 project which aims to develop Brazilian technology for Brazilian System of Digital Television

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents the concept, design and implementation of a MP-SoC platform, named STORM (MP-SoC DirecTory-Based PlatfORM). Currently the platform is composed of the following modules: SPARC V8 processor, GPOP processor, Cache module, Memory module, Directory module and two different modles of Network-on-Chip, NoCX4 and Obese Tree. All modules were implemented using SystemC, simulated and validated, individually or in group. The modules description is presented in details. For programming the platform in C it was implemented a SPARC assembler, fully compatible with gcc s generated assembly code. For the parallel programming it was implemented a library for mutex managing, using the due assembler s support. A total of 10 simulations of increasing complexity are presented for the validation of the presented concepts. The simulations include real parallel applications, such as matrix multiplication, Mergesort, KMP, Motion Estimation and DCT 2D

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyse the influence of colour information in optical flow methods. Typically, most of these techniques compute their solutions using grayscale intensities due to its simplicity and faster processing, ignoring the colour features. However, the current processing systems have minimized their computational cost and, on the other hand, it is reasonable to assume that a colour image offers more details from the scene which should facilitate finding better flow fields. The aim of this work is to determine if a multi-channel approach supposes a quite enough improvement to justify its use. In order to address this evaluation, we use a multi-channel implementation of a well-known TV-L1 method. Furthermore, we review the state-of-the-art in colour optical flow methods. In the experiments, we study various solutions using grayscale and RGB images from recent evaluation datasets to verify the colour benefits in motion estimation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present a model-based approach for real-time camera pose estimation in industrial scenarios. The line model which is used for tracking is generated by rendering a polygonal model and extracting contours out of the rendered scene. By un-projecting a point on the contour with the depth value stored in the z-buffer, the 3D coordinates of the contour can be calculated. For establishing 2D/3D correspondences the 3D control points on the contour are projected into the image and a perpendicular search for gradient maxima for every point on the contour is performed. Multiple hypotheses of 2D image points corresponding to a 3D control point make the pose estimation robust against ambiguous edges in the image.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the problem of obtaining complete, detailed reconstructions of textureless shiny objects. We present an algorithm which uses silhouettes of the object, as well as images obtained under changing illumination conditions. In contrast with previous photometric stereo techniques, ours is not limited to a single viewpoint but produces accurate reconstructions in full 3D. A number of images of the object are obtained from multiple viewpoints, under varying lighting conditions. Starting from the silhouettes, the algorithm recovers camera motion and constructs the object's visual hull. This is then used to recover the illumination and initialize a multiview photometric stereo scheme to obtain a closed surface reconstruction. There are two main contributions in this paper: First, we describe a robust technique to estimate light directions and intensities and, second, we introduce a novel formulation of photometric stereo which combines multiple viewpoints and, hence, allows closed surface reconstructions. The algorithm has been implemented as a practical model acquisition system. Here, a quantitative evaluation of the algorithm on synthetic data is presented together with complete reconstructions of challenging real objects. Finally, we show experimentally how, even in the case of highly textured objects, this technique can greatly improve on correspondence-based multiview stereo results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Automatic analysis of human behaviour in large collections of videos is gaining interest, even more so with the advent of file sharing sites such as YouTube. However, challenges still exist owing to several factors such as inter- and intra-class variations, cluttered backgrounds, occlusion, camera motion, scale, view and illumination changes. This research focuses on modelling human behaviour for action recognition in videos. The developed techniques are validated on large scale benchmark datasets and applied on real-world scenarios such as soccer videos. Three major contributions are made. The first contribution is in the area of proper choice of a feature representation for videos. This involved a study of state-of-the-art techniques for action recognition, feature extraction processing and dimensional reduction techniques so as to yield the best performance with optimal computational requirements. Secondly, temporal modelling of human behaviour is performed. This involved frequency analysis and temporal integration of local information in the video frames to yield a temporal feature vector. Current practices mostly average the frame information over an entire video and neglect the temporal order. Lastly, the proposed framework is applied and further adapted to real-world scenario such as soccer videos. A dataset consisting of video sequences depicting events of players falling is created from actual match data to this end and used to experimentally evaluate the proposed framework.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most approaches to stereo visual odometry reconstruct the motion based on the tracking of point features along a sequence of images. However, in low-textured scenes it is often difficult to encounter a large set of point features, or it may happen that they are not well distributed over the image, so that the behavior of these algorithms deteriorates. This paper proposes a probabilistic approach to stereo visual odometry based on the combination of both point and line segment that works robustly in a wide variety of scenarios. The camera motion is recovered through non-linear minimization of the projection errors of both point and line segment features. In order to effectively combine both types of features, their associated errors are weighted according to their covariance matrices, computed from the propagation of Gaussian distribution errors in the sensor measurements. The method, of course, is computationally more expensive that using only one type of feature, but still can run in real-time on a standard computer and provides interesting advantages, including a straightforward integration into any probabilistic framework commonly employed in mobile robotics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: The goal of the present study was to use a three-dimensional (3D) gradient echo volume in combination with a fat-selective excitation as a 3D motion navigator (3D FatNav) for retrospective correction of microscopic head motion during high-resolution 3D structural scans of extended duration. The fat excitation leads to a 3D image that is itself sparse, allowing high parallel imaging acceleration factors - with the additional advantage of a minimal disturbance of the water signal used for the host sequence. METHODS: A 3D FatNav was inserted into two structural protocols: an inversion-prepared gradient echo at 0.33 × 0.33 × 1.00 mm resolution and a turbo spin echo at 600 μm isotropic resolution. RESULTS: Motion estimation was possible with high precision, allowing retrospective motion correction to yield clear improvements in image quality, especially in the conspicuity of very small blood vessels. CONCLUSION: The highly accelerated 3D FatNav allowed motion correction with noticeable improvements in image quality, even for head motion which was small compared with the voxel dimensions of the host sequence. Magn Reson Med 75:1030-1039, 2016. © 2015 Wiley Periodicals, Inc.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Visual motion cues play an important role in animal and humans locomotion without the need to extract actual ego-motion information. This paper demonstrates a method for estimating the visual motion parameters, namely the Time-To-Contact (TTC), Focus of Expansion (FOE), and image angular velocities, from a sparse optical flow estimation registered from a downward looking camera. The presented method is capable of estimating the visual motion parameters in a complicated 6 degrees of freedom motion and in real time with suitable accuracy for mobile robots visual navigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Minimally invasive cardiovascular interventions guided by multiple imaging modalities are rapidly gaining clinical acceptance for the treatment of several cardiovascular diseases. These images are typically fused with richly detailed pre-operative scans through registration techniques, enhancing the intra-operative clinical data and easing the image-guided procedures. Nonetheless, rigid models have been used to align the different modalities, not taking into account the anatomical variations of the cardiac muscle throughout the cardiac cycle. In the current study, we present a novel strategy to compensate the beat-to-beat physiological adaptation of the myocardium. Hereto, we intend to prove that a complete myocardial motion field can be quickly recovered from the displacement field at the myocardial boundaries, therefore being an efficient strategy to locally deform the cardiac muscle. We address this hypothesis by comparing three different strategies to recover a dense myocardial motion field from a sparse one, namely, a diffusion-based approach, thin-plate splines, and multiquadric radial basis functions. Two experimental setups were used to validate the proposed strategy. First, an in silico validation was carried out on synthetic motion fields obtained from two realistic simulated ultrasound sequences. Then, 45 mid-ventricular 2D sequences of cine magnetic resonance imaging were processed to further evaluate the different approaches. The results showed that accurate boundary tracking combined with dense myocardial recovery via interpolation/ diffusion is a potentially viable solution to speed up dense myocardial motion field estimation and, consequently, to deform/compensate the myocardial wall throughout the cardiac cycle. Copyright © 2015 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica