999 resultados para budget votes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on 1997-1998 field investigations in the Changjiang river mouth, rain sampling from the river's upper reaches to the mouth, historical data, and relevant literature, the various sources of Total Nitrogen (TN) and Dissolved Inorganic Nitrogen (DIN) in the Changjiang river catchment and N transport in the Changjiang river mouth were estimated. The export fluxes of various form of were mainly controlled by the river runoff, and the export fluxes of NO3-N, DIN and TN in 1998 (an especially heavy flood year) were 1438 103 tonnes (t) yr(-1) or 795.1 kg km(-2) yr(-1) 1746 10(3) t yr(-1) or 965.4 kg km(-2) yr(-1) and 2849 10(3) t yr(-1) or 1575.3 kg km(-2) yr(-1), respectively. The TN and DIN in the Changjiang river came mainly from precipitation, agricultural nonpoint sources, N lost from fertilizer and soil, and point sources of industrial waste and residential sewage discharge, which were about 56.2% and 62.3%, 15.4% and 18.5%, 17.1% and 14.4%, respectively, of the N outflow at the Changjiang river mouth; maximum transport being in the middle reaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pond farming for sea cucumber has developed rapidly along the northern coast of China in the recent years. Holothurians inhabiting ponds undergo seasonal fluctuations of salinity. This study deals with the bioenergetic responses of pond-cultured sea cucumbers Apostichopus japonicus (wet weight of 37.5 +/- 1.8 g) to different water salinities [22, 27, 31.5, and 36 practical salinity units (psu)] at 15 degrees C in the laboratory to determine the influence of water salinity on growth and energy allocation in this species. Results show that ingested energy and scope for growth (SFG) were highest at 31.5 psu and then decreased when water salinity was below or above this point. Although energy ingested was lowest at 36 psu, the lowest SFG occurred at 22 psu (only 102.68 +/- 14.26 J g(-1) d(-1)) because animals reared at 22 psu spent much more consumed energy on feces (72.19%), respiration (21.70%), and excretion (2.59%), leaving less energy for growth (3.52%). Results suggest that pond-cultured sea cucumbers could tolerate chronic salinity fluctuations at a range of 22 to 36 psu and grew better between 27 and 31.5 psu, but decreased at salinities above and below the mentioned salinity range. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smoking is an expensive habit. Smoking households spend, on average, more than $US1000 annually on cigarettes. When a family member quits, in addition to the former smoker's improved long-term health, families benefit because savings from reduced cigarette expenditures can be allocated to other goods. For households in which some members continue to smoke, smoking expenditures crowd-out other purchases, which may affect other household members, as well as the smoker. We empirically analyse how expenditures on tobacco crowd-out consumption of other goods, estimating the patterns of substitution and complementarity between tobacco products and other categories of household expenditure. We use the Consumer Expenditure Survey data for the years 1995-2001, which we complement with regional price data and state cigarette prices. We estimate a consumer demand system that includes several main expenditure categories (cigarettes, food, alcohol, housing, apparel, transportation, medical care) and controls for socioeconomic variables and other sources of observable heterogeneity. Descriptive data indicate that, comparing smokers to nonsmokers, smokers spend less on housing. Results from the demand system indicate that as the price of cigarettes rises, households increase the quantity of food purchased, and, in some samples, reduce the quantity of apparel and housing purchased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanistic models such as those based on dynamic energy budget (DEB) theory are emergent ecomechanics tools to investigate the extent of fitness in organisms through changes in life history traits as explained by bioenergetic principles. The rapid growth in interest around this approach originates from the mechanistic characteristics of DEB, which are based on a number of rules dictating the use of mass and energy flow through organisms. One apparent bottleneck in DEB applications comes from the estimations of DEB parameters which are based on mathematical and statistical methods (covariation method). The parameterisation process begins with the knowledge of some functional traits of a target organism (e. g. embryo, sexual maturity and ultimate body size, feeding and assimilation rates, maintenance costs), identified from the literature or laboratory experiments. However, considering the prominent role of the mechanistic approach in ecology, the reduction of possible uncertainties is an important objective. We propose a revaluation of the laboratory procedures commonly used in ecological studies to estimate DEB parameters in marine bivalves. Our experimental organism was Brachidontes pharaonis. We supported our proposal with a validation exercise which compared life history traits as obtained by DEBs (implemented with parameters obtained using classical laboratory methods) with the actual set of species traits obtained in the field. Correspondence between the 2 approaches was very high (>95%) with respect to estimating both size and fitness. Our results demonstrate a good agreement between field data and model output for the effect of temperature and food density on age-size curve, maximum body size and total gamete production per life span. The mechanistic approach is a promising method of providing accurate predictions in a world that is under in creasing anthropogenic pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), E-FF was 8.9 +/- 0.4 GtC yr(-1), E-LUC 0.9 +/- 0.5 GtC yr(-1), G(ATM) 4.3 +/- 0.1 GtC yr(-1), S-OCEAN 2.6 +/- 0.5 GtC yr(-1), and S-LAND 2.9 +/- 0.8 GtC yr(-1). For year 2013 alone, E-FF grew to 9.9 +/- 0.5 GtC yr(-1), 2.3% above 2012, continuing the growth trend in these emissions, E-LUC was 0.9 +/- 0.5 GtC yr(-1), G(ATM) was 5.4 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and S-LAND was 2.5 +/- 0.9 GtC yr(-1). G(ATM) was high in 2013, reflecting a steady increase in E-FF and smaller and opposite changes between S-OCEAN and S-LAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 +/- 0.10 ppm averaged over 2013. We estimate that E-FF will increase by 2.5% (1.3-3.5 %) to 10.1 +/- 0.6 GtC in 2014 (37.0 +/- 2.2 GtCO(2) yr(-1)), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of E-FF and assumed constant E-LUC for 2014, cumulative emissions of CO2 will reach about 545 +/- 55 GtC (2000 +/- 200 GtCO(2)) for 1870-2014, about 75% from E-FF and 25% from E-LUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quere et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Oldman River Basin (OMRB), located in southern Alberta (Canada), with an area of 28,200 km2, is mainly forested in its western part and is used for intensive agriculture in its eastern part. The objective of this paper is to estimate the nitrogen (N) budget for the Oldman River Basin as a whole and its sub-basins, and to discuss differences in the N budget between various sub-basins. Better knowledge of the N budget in this watershed may be also utilized for understanding N dynamics in similar watersheds within semi-arid climatic regions. The model used is a mass balance spreadsheet model that takes into account N inputs and N export through surface water. During the last 120 years, anthropogenic N inputs to the OMRB have increased circa 40 fold. By the end of the 20th century, the OMRB received an annualN input of about 5174 kg N km-2 yr-1, whereas only about 25 kg N km-2 yr-1 were exported via riverine flow. For the sub-basins, annual N inputs ranged from 2516 to 19011 kg N km-2 yr-1, and annual N export via riverine flows varied between 6 and 277 kg N km-2 yr-1. Over 85% of total N inputs to the OMRB are due to anthropogenic activities, including manure (55%), synthetic fertilizer (27%), and N fixation on agricultural lands (4%). Sewage accounted for less than 1%, and N inputs from atmospheric deposition and fixation in forests represented 6 and 8% respectively. Despite increasing anthropogenic N inputs, N export with riverine flow currently accounts for only 1% of the inputs, indicating thatmost of theNinputs are currently retained in the OMRB or are re-emitted into the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article explores an opportunity for mutual learning between the fields of human rights law and economic analysis. Specifically it considers how economic techniques might be used to appraise public expenditure in line with international obligations arising from the International Covenant on Economic, Social and Cultural Rights 1966 (ICESCR). Our argument is that such tools do have the potential to contribute to this aim, but that embedding them within government budget processes through “human rights mainstreaming” may prove problematic in practice. We therefore suggest, as part of a broader strategy which includes judicial enforcement, that mainstreaming initiatives and budget analysis can be useful as complementary tools for the full realisation of all human rights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human rights based budget analysis projects have emerged at a time when the United Nations has asserted the indivisibility of all human rights and attention is increasingly focused on the role of non-judicial bodies in promoting and protecting human rights. This book seeks to develop the human rights framework for such budget analyses, by exploring the international law obligations of the International Covenant on Economic, Social and Cultural Rights (ICESCR) in relation to budgetary processes. The book outlines international experiences and comparative practice in relation to economic and social rights budget analysis and budgeting.

The book sets out an ICESCR-based methodology for analysing budget and resource allocations and focuses on the legal obligation imposed on state parties by article 2(1) of ICESCR to progressively realise economic and social rights to 'the maximum of available resources'. Taking Northern Ireland as a key case study, the book demonstrates and promotes the use of a ‘rights-based’ approach in budgetary decision-making.

The book will be relevant to a global audience currently considering how to engage in the budget process from a human rights perspective. It will be of interest to students and researchers of international human rights law and public law, as well as economic and social rights advocacy and lobbying groups.