906 resultados para boundary element method
Resumo:
This work deals with analysis of cracked structures using BEM. Two formulations to analyse the crack growth process in quasi-brittle materials are discussed. They are based on the dual formulation of BEM where two different integral equations are employed along the opposite sides of the crack surface. The first presented formulation uses the concept of constant operator, in which the corrections of the nonlinear process are made only by applying appropriate tractions along the crack surfaces. The second presented BEM formulation to analyse crack growth problems is an implicit technique based on the use of a consistent tangent operator. This formulation is accurate, stable and always requires much less iterations to reach the equilibrium within a given load increment in comparison with the classical approach. Comparison examples of classical problem of crack growth are shown to illustrate the performance of the two formulations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.
Resumo:
The use of finite element analysis (FEA) to design electrical motors has increased significantly in the past few years due the increasingly better performance of modern computers. Even though the analytical software remains the most used tool, the FEA is widely used to refine the analysis and gives the final design to be prototyped. The power factor, a standard data of motor manufactures data sheet is important because it shows how much reactive power is consumed by the motor. This data becomes important when the motor is connected to network. However, the calculation of power factor is not an easy task. Due to the saturation phenomena the input motor current has a high level of harmonics that cannot be neglected. In this work the FEA is used to evaluate a proposed (not limitative) methodology to estimate the power factor or displacement factor of a small single-phase induction motor. Results of simulations and test are compared.
Resumo:
Most post-processors for boundary element (BE) analysis use an auxiliary domain mesh to display domain results, working against the profitable modelling process of a pure boundary discretization. This paper introduces a novel visualization technique which preserves the basic properties of the boundary element methods. The proposed algorithm does not require any domain discretization and is based on the direct and automatic identification of isolines. Another critical aspect of the visualization of domain results in BE analysis is the effort required to evaluate results in interior points. In order to tackle this issue, the present article also provides a comparison between the performance of two different BE formulations (conventional and hybrid). In addition, this paper presents an overview of the most common post-processing and visualization techniques in BE analysis, such as the classical algorithms of scan line and the interpolation over a domain discretization. The results presented herein show that the proposed algorithm offers a very high performance compared with other visualization procedures.
Resumo:
We present finite element simulations of temperature gradient driven rock alteration and mineralization in fluid saturated porous rock masses. In particular, we explore the significance of production/annihilation terms in the mass balance equations and the dependence of the spatial patterns of rock alteration upon the ratio of the roll over time of large scale convection cells to the relaxation time of the chemical reactions. Special concepts such as the gradient reaction criterion or rock alteration index (RAI) are discussed in light of the present, more general theory. In order to validate the finite element simulation, we derive an analytical solution for the rock alteration index of a benchmark problem on a two-dimensional rectangular domain. Since the geometry and boundary conditions of the benchmark problem can be easily and exactly modelled, the analytical solution is also useful for validating other numerical methods, such as the finite difference method and the boundary element method, when they are used to dear with this kind of problem. Finally, the potential of the theory is illustrated by means of finite element studies related to coupled flow problems in materially homogeneous and inhomogeneous porous rock masses. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
We have recently developed a scaleable Artificial Boundary Inhomogeneity (ABI) method [Chem. Phys. Lett.366, 390–397 (2002)] based on the utilization of the Lanczos algorithm, and in this work explore an alternative iterative implementation based on the Chebyshev algorithm. Detailed comparisons between the two iterative methods have been made in terms of efficiency as well as convergence behavior. The Lanczos subspace ABI method was also further improved by the use of a simpler three-term backward recursion algorithm to solve the subspace linear system. The two different iterative methods are tested on the model collinear H+H2 reactive state-to-state scattering.
Resumo:
This study was carried out with the aim of modeling in 2D, in plain strain, the movement of a soft cohesive soil around a pile, in order to enable the determination of stresses resulting along the pile, per unit length. The problem in study fits into the large deformations problem and can be due to landslide, be close of depth excavations, to be near of zones where big loads are applied in the soil, etc. In this study is used an constitutive Elasto-Plastic model with the failure criterion of Mohr-Coulomb to model the soil behavior. The analysis is developed considering the soil in undrained conditions. To the modeling is used the finite element program PLAXIS, which use the Updated Lagrangian - Finite Element Method (UL-FEM). In this work, special attention is given to the soil-pile interaction, where is presented with some detail the formulation of the interface elements and some studies for a better understand of his behavior. It is developed a 2-D model that simulates the effect of depth allowing the study of his influence in the stress distribution around the pile. The results obtained give an important base about how behaves the movement of the soil around a pile, about how work the finite element program PLAXIS and how is the stress distribution around the pile. The analysis demonstrate that the soil-structure interaction modeled with the UL-FEM and interface elements is more appropriate to small deformations problems.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
Adhesive-bonding for the unions in multi-component structures is gaining momentum over welding, riveting and fastening. It is vital for the design of bonded structures the availability of accurate damage models, to minimize design costs and time to market. Cohesive Zone Models (CZM’s) have been used for fracture prediction in structures. The eXtended Finite Element Method (XFEM) is a recent improvement of the Finite Element Method (FEM) that relies on traction-separation laws similar to those of CZM’s but it allows the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom. This work proposes and validates a damage law to model crack propagation in a thin layer of a structural epoxy adhesive using the XFEM. The fracture toughness in pure mode I (GIc) and tensile cohesive strength (sn0) were defined by Double-Cantilever Beam (DCB) and bulk tensile tests, respectively, which permitted to build the damage law. The XFEM simulations of the DCB tests accurately matched the experimental load-displacement (P-d) curves, which validated the analysis procedure.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2011
Resumo:
Proyecto de investigación realizado a partir de una estancia en el Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC), Argentina, entre febrero y abril del 2007. La simulación numérica de problemas de mezclas mediante el Particle Finite Element Method (PFEM) es el marco de estudio de una futura tesis doctoral. Éste es un método desarrollado conjuntamente por el CIMEC y el Centre Internacional de Mètodos Numèrics en l'Enginyeria (CIMNE-UPC), basado en la resolución de las ecuaciones de Navier-Stokes en formulación Lagrangiana. El mallador ha sido implementado y desarrollado por Dr. Nestor Calvo, investigador del CIMEC. El desarrollo del módulo de cálculo corresponde al trabajo de tesis de la beneficiaria. La correcta interacción entre ambas partes es fundamental para obtener resultados válidos. En esta memoria se explican los principales aspectos del mallador que fueron modificados (criterios de refinamiento geométrico) y los cambios introducidos en el módulo de cálculo (librería PETSc, algoritmo predictor-corrector) durante la estancia en el CIMEC. Por último, se muestran los resultados obtenidos en un problema de dos fluidos inmiscibles con transferencia de calor.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.