996 resultados para bone mineralization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mineralization of the articular cartilage is a pathological condition associated with age and certain joint diseases in humans and other mammals. In this work, we describe a physiological process of articular cartilage mineralization in bullfrogs. Articular cartilage of the proximal and distal ends of the femur and of the proximal end of the tibia-fibula was studied in animals of different ages. Mineralization of the articular cartilage was detected in animals at 1 month post-transformation. This mineralization, which appeared before the hypertrophic cartilage showed any calcium deposition, began at a restricted site in the lateral expansion of the cartilage and then progressed to other areas of the epiphyseal cartilage. Mineralized structures were identified by von Kossa's staining and by in vivo incorporation of calcein green. Element analysis showed that calcium crystals consisted of poorly crystalline hydroxyapatite. Mineralized matrix was initially spherical structures that generally coalesced after a certain size to occupy larger areas of the cartilage. Alkaline phosphatase activity was detected at the plasma membrane of nearby chondrocytes and in extracellular matrix. Apoptosis was detected by the TUNEL (TDT-mediated dUTP-biotin nick end-labeling) reaction in some articular chondrocytes from mineralized areas. The area occupied by calcium crystals increased significantly in older animals, especially in areas under compression. Ultrastructural analyses showed clusters of needle-like crystals in the extracellular matrix around the chondrocytes and large blocks of mineralized matrix. In 4-year-old animals, some lamellar bone (containing bone marrow) occurred in the same area as articular cartilage mineralization. These results show that the articular cartilage of R. catesbeiana undergoes precocious and progressive mineralization that is apparently stimulated by compressive forces. We suggest that this mineralization is involved in the closure of bone extremities, since mineralization appears to precede the formation of a rudimentary secondary center of ossification in older animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, poly (e-caprolactone) [PCL] and its collagen composite blend (PCL=Col) were fabricated to scaffolds using electrospinning method. Incorporated collagen was present on the surface of the fibers, and it modulated the attachment and proliferation of pig bone marrow mesenchymal cells (pBMMCs). Osteogenic differentiation markers were more pronounced when these cells were cultured on PCL=Col fibrous meshes, as determined by immunohistochemistry for collagen type I, osteopontin, and osteocalcin. Matrix mineralization was observed only on osteogenically induced PCL=Col constructs. Long bone analogs were created by wrapping osteogenic cell sheets around the PCL=Col meshes to form hollow cylindrical cell-scaffold constructs. Culturing these constructs under dynamic conditions enhanced bone-like tissue formation and mechanical strength.We conclude that electrospun PCL=Col mesh is a promising material for bone engineering applications. Its combination with osteogenic cell sheets offers a novel and promising strategy for engineering of tubular bone analogs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoarthritic subchondral bone is characterized by abnormal bone density and enhanced production of bone turnover markers, an indication of osteoblast dysfunction. Several studies have proposed that pathological changes in articular cartilage influence the subchondral bone changes, which are typical of the progression of osteoarthritis; however, direct evidence of this has yet to be reported. The aim of the present study was to investigate what effects articular cartilage cells, isolated from normal and osteoarthritic joints, may have on the subchondral bone osteoblast phenotype, and also the potential involvement of the mitogen activated protein kinase (MAPK) signalling pathway during this process. Our results suggest that chondrocytes isolated from a normal joint inhibited osteoblast differentiation, whereas chondrocytes isolated from an osteoarthritic joint enhanced osteoblast differentiation, both via a direct and indirect cell interaction mechanisms. Furthermore, the interaction of subchondral bone osteoblasts with osteoarthritic chondrocyte conditioned media appeared to significantly activate ERK1/2 phosphorylation. On the other hand, conditioned media from normal articular chondrocytes did not affect ERK1/2 phosphorylation. Inhibition of the MAPK–ERK1/2 pathways reversed the phenotype changes of subchondral bone osteoblast, which would otherwise be induced by the conditioned media from osteoarthritic chondrocytes. In conclusion, our findings provide evidence that osteoarthritic chondrocytes affect subchondral bone osteoblast metabolism via an ERK1/2 dependent pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer aided technologies, medical imaging, and rapid prototyping has created new possibilities in biomedical engineering. The systematic variation of scaffold architecture as well as the mineralization inside a scaffold/bone construct can be studied using computer imaging technology and CAD/CAM and micro computed tomography (CT). In this paper, the potential of combining these technologies has been exploited in the study of scaffolds and osteochondral repair. Porosity, surface area per unit volume and the degree of interconnectivity were evaluated through imaging and computer aided manipulation of the scaffold scan data. For the osteochondral model, the spatial distribution and the degree of bone regeneration were evaluated. In this study the versatility of two softwares Mimics (Materialize), CTan and 3D realistic visualization (Skyscan) were assessed, too.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of tissue-engineered constructs for skeletal regeneration of large critical-sized defects requires the identification of a sustained mineralizing cell source and careful optimization of scaffold architecture and surface properties. We have recently reported that Runx2-genetically engineered primary dermal fibroblasts express a mineralizing phenotype in monolayer culture, highlighting their potential as an autologous osteoblastic cell source which can be easily obtained in large quantities. The objective of the present study was to evaluate the osteogenic potential of Runx2-expressing fibroblasts when cultured in vitro on three commercially available scaffolds with divergent properties: fused deposition-modeled polycaprolactone (PCL), gas-foamed polylactide-co-glycolide (PLGA), and fibrous collagen disks. We demonstrate that the mineralization capacity of Runx2-engineered fibroblasts is scaffold dependent, with collagen foams exhibiting ten-fold higher mineral volume compared to PCL and PLGA matrices. Constructs were differentially colonized by genetically modified fibroblasts, but scaffold-directed changes in DNA content did not correlate with trends in mineral deposition. Sustained expression of Runx2 upregulated osteoblastic gene expression relative to unmodified control cells, and the magnitude of this expression was modulated by scaffold properties. Histological analyses revealed that matrix mineralization co-localized with cellular distribution, which was confined to the periphery of fibrous collagen and PLGA sponges and around the circumference of PCL microfilaments. Finally, FTIR spectroscopy verified that mineral deposits within all Runx2-engineered scaffolds displayed the chemical signature characteristic of carbonate-containing, poorly crystalline hydroxyapatite. These results highlight the important effect of scaffold properties on the capacity of Runx2-expressing primary dermal fibroblasts to differentiate into a mineralizing osteoblastic phenotype for bone tissue engineering applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, research has focused on bone marrow derived multipotent mesenchymal precursor cells (MPC) for their potential clinical use in bone engineering. Prior to clinical application, MPC-based treatment concepts need to be evaluated in preclinical, immunocompetent, large animal models. Sheep in particular are considered a valid model for orthopaedic and trauma related research. However, ovine MPC and their osteogenic potential remain poorly characterized. In the present study, ex vivo expanded MPC isolated from ovine bone marrow proliferated at a higher rate than osteoblasts (OB) derived from tibial compact bone as assessed using standard 2D culture. MPC expressed the respective phenotypic profile typical for different mesenchymal cell populations (CD14-/CD31-/CD45- /CD29+/CD44+/CD166+) and showed a multilineage differentiation potential. When compared to OB, MPC had a higher mineralization potential under standard osteogenic culture conditions and expressed typical markers such as osteocalcin, osteonectin and type I collagen at the mRNA and protein level. After 4 weeks in 3D culture, MPC constructs demonstrated higher cell density and mineralization, whilst cell viability on the scaffolds was assessed >90%. Cells displayed a spindle-like morphology and formed an interconnected network. Implanted subcutaneously into NOD/SCID mice on type I collagen coated polycaprolactone-tricalciumphosphate (mPCL-TCP) scaffolds, MPC presented a higher developmental potential than osteoblasts. In summary, this study provides a detailed in vitro characterisation of ovine MPC from a bone engineering perspective and suggests that MPC provide promising means for future bone disease related treatment applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell based therapies for bone regeneration are an exciting emerging technology, but the availability of osteogenic cells is limited and an ideal cell source has not been identified. Amniotic fluid-derived stem (AFS) cells and bone-marrow derived mesenchymal stem cells (MSCs) were compared to determine their osteogenic differentiation capacity in both 2D and 3D environments. In 2D culture, the AFS cells produced more mineralized matrix but delayed peaks in osteogenic markers. Cells were also cultured on 3D scaffolds constructed of poly-e-caprolactone for 15 weeks. MSCs differentiated more quickly than AFS cells on 3D scaffolds, but mineralized matrix production slowed considerably after 5 weeks. In contrast, the rate of AFS cell mineralization continued to increase out to 15 weeks, at which time AFS constructs contained 5-fold more mineralized matrix than MSC constructs. Therefore, cell source should be taken into consideration when used for cell therapy, as the MSCs would be a good choice for immediate matrix production, but the AFS cells would continue robust mineralization for an extended period of time. This study demonstrates that stem cell source can dramatically influence the magnitude and rate of osteogenic differentiation in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past 20 years, mesoporous materials have been attracted great attention due to their significant feature of large surface area, ordered mesoporous structure, tunable pore size and volume, and well-defined surface property. They have many potential applications, such as catalysis, adsorption/separation, biomedicine, etc. [1]. Recently, the studies of the applications of mesoporous materials have been expanded into the field of biomaterials science. A new class of bioactive glass, referred to as mesoporous bioactive glass (MBG), was first developed in 2004. This material has a highly ordered mesopore channel structure with a pore size ranging from 5–20 nm [1]. Compared to non-mesopore bioactive glass (BG), MBG possesses a more optimal surface area, pore volume and improved in vitro apatite mineralization in simulated body fluids [1,2]. Vallet-Regí et al. has systematically investigated the in vitro apatite formation of different types of mesoporous materials, and they demonstrated that an apatite-like layer can be formed on the surfaces of Mobil Composition of Matters (MCM)-48, hexagonal mesoporous silica (SBA-15), phosphorous-doped MCM-41, bioglass-containing MCM-41 and ordered mesoporous MBG, allowing their use in biomedical engineering for tissue regeneration [2-4]. Chang et al. has found that MBG particles can be used for a bioactive drug-delivery system [5,6]. Our study has shown that MBG powders, when incorporated into a poly (lactide-co-glycolide) (PLGA) film, significantly enhance the apatite-mineralization ability and cell response of PLGA films. compared to BG [7]. These studies suggest that MBG is a very promising bioactive material with respect to bone regeneration. It is known that for bone defect repair, tissue engineering represents an optional method by creating three-dimensional (3D) porous scaffolds which will have more advantages than powders or granules as 3D scaffolds will provide an interconnected macroporous network to allow cell migration, nutrient delivery, bone ingrowth, and eventually vascularization [8]. For this reason, we try to apply MBG for bone tissue engineering by developing MBG scaffolds. However, one of the main disadvantages of MBG scaffolds is their low mechanical strength and high brittleness; the other issue is that they have very quick degradation, which leads to an unstable surface for bone cell growth limiting their applications. Silk fibroin, as a new family of native biomaterials, has been widely studied for bone and cartilage repair applications in the form of pure silk or its composite scaffolds [9-14]. Compared to traditional synthetic polymer materials, such as PLGA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the chief advantage of silk fibroin is its water-soluble nature, which eliminates the need for organic solvents, that tend to be highly cytotoxic in the process of scaffold preparation [15]. Other advantages of silk scaffolds are their excellent mechanical properties, controllable biodegradability and cytocompatibility [15-17]. However, for the purposes of bone tissue engineering, the osteoconductivity of pure silk scaffolds is suboptimal. It is expected that combining MBG with silk to produce MBG/silk composite scaffolds would greatly improve their physiochemical and osteogenic properties for bone tissue engineering application. Therefore, in this chapter, we will introduce the research development of MBG/silk scaffolds for bone tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After bone fracture, various cellular activities lead to the formation of different tissue types, which form the basis for the process of secondary bone healing. Although these tissues have been quantified by histology, their material properties are not well understood. Thus, the aim of this study is to correlate the spatial and temporal variations in the mineral content and the nanoindentation modulus of the callus formed via intramembranous ossification over the course of bone healing. Midshaft tibial samples from a sheep osteotomy model at time points of 2, 3, 6 and 9 weeks were employed. PMMA embedded blocks were used for quantitative back scattered electron imaging and nanoindentation of the newly formed periosteal callus near the cortex. The resulting indentation modulus maps show the heterogeneity in the modulus in the selected regions of the callus. The indentation modulus of the embedded callus is about 6 GPa at the early stage. At later stages of mineralization, the average indentation modulus reaches 14 GPa. There is a slight decrease in average indentation modulus in regions distant to the cortex, probably due to remodelling of the peripheral callus. The spatial and temporal distribution of mineral content in the callus tissue also illustrates the ongoing remodelling process observed from histological analysis. Most interestingly the average indentation modulus, even at 9 weeks, remains as low as 13 GPa, which is roughly 60% of that for cortical sheep bone. The decreased indentation modulus in the callus compared to cortex is due to the lower average mineral content and may be perhaps also due to the properties of the organic matrix which might be different from normal bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem-cell mediated therapies for fracture and other orthopaedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of simulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase (ALP) activity and extracellular matrix mineralization. Furthermore, similar DMSO mediated mineralization enhancement was observed in primary osteoblast-like cells differentiated from mouse mesenchymal cells derived from fat, a promising source of starter cells for cell-based therapy. Using a convenient mouse pre-osteoblast model cell line MC3T3-E1 we further investigated this phenomenon showing that numerous osteoblast-expressed genes were elevated in response to DMSO treatment and correlated with enhanced mineralization. Myocyte enhancer factor 2c (Mef2c) was identified as the transcription factor most induced by DMSO, among numerous DMSO-induced genes, suggesting a role for Mef2c in osteoblast gene regulation. Immunohistochemistry confirmed expression of Mef2c in osteoblast-like cells in mouse mandible, cortical and trabecular bone. shRNAi-mediated Mef2c gene silencing resulted in defective osteoblast differentiation, decreased ALP activity and matrix mineralization and knockdown of osteoblast specific gene expression, including osteocalcin and bone sialoprotein. Flow on knockdown of bone specific transcription factors, Runx2 and osterix by shRNAi knockdown of Mef2c suggests that Mef2c lies upstream of these two important factors in the cascade of gene expression in osteoblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Objective: A number of bone filling materials containing calcium (Ca++) and phosphate (P) ions have been used in the repair of periodontal bone defects; however, the effect that local release of Ca++ and P ions have on biological reactions is not fully understood. In this study, we investigated the effects of various levels of Ca++ and P ions on the proliferation, osteogenic differentiation, and mineralization of human periodontal ligament cells (hPDLCs). Materials and Methods: hPDLCs were obtained using an explant culture method. Defined concentrations and ratios of ionic Ca++ to inorganic P were added to standard culture and osteogenic induction media. The ability of hPDLCs to proliferate in these growth media was assayed using the Cell Counting Kit-8 (CCK-8). Cell apoptosis was evaluated by FITC-Annexin V/PI double staining method. Osteogenic differentiation and mineralization were investigated by morphological observations, alkaline phosphatase (ALP) activity, and Alizarin red S/von Kossa staining. The mRNA expression of osteogenic related markers was analyzed using a reverse transcriptase polymerase chain reaction (RT-PCR). Results: Within the ranges of Ca++ and P ions concentrations tested, we observed that increased concentrations of Ca++ and P ions enhanced cell proliferation and formation of mineralized matrix nodules; whereas ALP activity was reduced. The RT-PCR results showed that elevated concentrations of Ca++ and P ions led to a general increase of Runx2 mRNA expression and decreased ALP mRNA expression, but gave no clear trend on OCN mRNA levels. Conclusion: The concentrations and ratios of Ca++ and P ions could significantly influence proliferation, differentiation, and mineralization of hPDLCs. Within the range of concentrations tested, we found that the combination of 9.0 mM Ca++ ions and 4.5 mM P ions were the optimum concentrations for proliferation, differentiation, and mineralization in hPDLCs.