939 resultados para body-size change


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comment on: Hughes LA, Schouten LJ, Goldbohm RA, van den Brandt PA, Weijenberg MP. Self-reported clothing size as a proxy measure for body size. Epidemiology. 2009 Sep;20(5):673-6. PMID: 19451821

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While obesity continues to rise globally, the associations between body size, gender, and socioeconomic status (SES) seem to vary in different populations, and little is known on the contribution of perceived ideal body size in the social disparity of obesity in African countries. We examined the gender and socioeconomic patterns of body mass index (BMI) and perceived ideal body size in the Seychelles, a middle-income small island state in the African region. We also assessed the potential role of perceived ideal body size as a mediator for the gender-specific association between SES and BMI. A population-based survey of 1,240 adults aged 25 to 64 years conducted in December 2013. Participants' BMI was calculated based on measured weight and height; ideal body size was assessed using a nine-silhouette instrument. Three SES indicators were considered: income, education, and occupation. BMI and perceived ideal body size were both higher among men of higher versus lower SES (p< .001) but lower among women of higher versus lower SES (p< .001), irrespective of the SES indicator used. Multivariate analysis showed a strong and direct association between perceived ideal body size and BMI in both men and women (p< .001) and was consistent with a potential mediating role of perceived ideal body size in the gender-specific associations between SES and BMI. Our study emphasizes the importance of gender and socioeconomic differences in BMI and ideal body size and suggests that public health interventions that promote perception of healthy weight could help mitigate SES-related disparities in BMI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The allometric scaling relationship observed between metabolic rate (MR) and species body mass can be partially explained by differences in cellular MR (Porter & Brand, 1995). Here, I studied cultured cell lines derived from ten mammalian species to determine whether cells propagated in an identical environment exhibited MR scaling. Oxidative and anaerobic metabolic parameters did not scale significantly with donor body mass in cultured cells, indicating the absence of an intrinsic MR setpoint. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms (West et al., 2002). As such cells were cultured under a variety of physiologically relevant oxygen tensions to investigate the effect of oxygen on cellular metabolic rates. Exposure to higher medium oxygen tensions resulted in increased metabolic rates in all cells. Higher MRs have the potential to produce more reactive oxygen species (ROS) which could cause genomic instability and thus reduced lifespan. Longer-lived species are more resistant to oxidative stress (Kapahi et al, 1999), which may be due to greater antioxidant and/or DNA repair capacities. This hypothesis was addressed by culturing primary dermal fibroblasts from eight mammalian species ranging in maximum lifespan from 5 to 120 years. Only the antioxidant manganese superoxide dismutases (MnSOD) positively scaled with species lifespan (p<0.01). Oxidative damage to DNA is primarily repaired by the base excision repair (BER) pathway. BER enzyme activities showed either no correlation or as in the case of polymerase p correlated, negatively with donor species (p<0.01 ). Typically, mammalian cells are cultured in a 20% O2 (atmospheric) environment, which is several-fold higher than cells experience in vivo. Therefore, the secondary aim of this study was to determine the effect of culturing mammalian cells at a more physiological oxygen tension (3%) on BER, and antioxidant, enzyme activities. Consistently, standard culture conditions induce higher antioxidant and DNA ba.se excision repair activities than are present under a more physiological oxygen concentration. Therefore, standard culture conditions are inappropriate for studies of oxidative stress-induced activities and species differences in fibroblast DNA BER repair capacities may represent differences in ability to respond to oxidative stress. An interesting outcome firom this study was that some inherent cellular properties are maintained in culture (i.e. stress responses) while others are not (i.e. MR).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of male body weight on the aggressive and mating behaviour of male Gryllus integer was studied under laboratory conditions. The relationship between adult age and weight was first determined; female weight increased and male weight decreased with age. Virgin males that had been isolated since the adult molt were paired for similar age and a difference in weight of greater than 200 mg. Paired males and a virgin female were observed in a glass arena for 24 minutes or until a mating occurred. Larger males mated significantly more often than smaller males. Larger males attacked more often, were more successful in aggressive encounters and had more contact with the female. Males that did not mate had lower rates of courtship and mounts than males that mated. Females in trials that did not result in a mating were signifcantly heavier than females in trials that resulted in a mating. Larger males that mated were significantly closer in weight to the weight of the female than larger males in trials that did not result in a mating. Larger males in trials that did not result in a mating had higher rates of aggressive stridulation than larger males that mated. Male weight is therefore important in mating success; fitness traits should theoretically show low genetic variability. However, significant heritability values were found for live weight, dry weight, head width, pronotum width and length, hind femur length and forewing length when estimated from the regression of offspring on mid-parent values, offspring and female and male values separately and full-sib correlations. The heritability of hind femur width was significant when estimated from the regression of offspring on male parent and from full-sib correlations. Heritability estimates of forewing length were significantly higher when estimated from the regression of offspring on female parent than when estimated from the regression of offspring on male parent. High phenotypic, genetic and environmental correlations were found between all pairs of traits. Data on male mating success and the heritability of fitness traits were discussed in terms of the maintenance of genetic variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>1. Management of lowland mesotrophic grasslands in north-west Europe often makes use of inorganic fertilizers, high stocking densities and silage-based forage systems to maximize productivity. The impact of these practices has resulted in a simplification of the plant community combined with wide-scale declines in the species richness of grassland invertebrates. We aim to identify how field margin management can be used to promote invertebrate diversity across a suite of functionally diverse taxa (beetles, planthoppers, true bugs, butterflies, bumblebees and spiders). 2. Using an information theoretic approach we identify the impacts of management (cattle grazing, cutting and inorganic fertilizer) and plant community composition (forb species richness, grass species richness and sward architecture) on invertebrate species richness and body size. As many of these management practices are common to grassland systems throughout the world, understanding invertebrate responses to them is important for the maintenance of biodiversity. 3. Sward architecture was identified as the primary factor promoting increased species richness of both predatory and phytophagous trophic levels, as well as being positively correlated with mean body size. In all cases phytophagous invertebrate species richness was positively correlated with measures of plant species richness. 4. The direct effects of management practices appear to be comparatively weak, suggesting that their impacts are indirect and mediated though the continuous measures of plant community structure, such as sward architecture or plant species richness. 5. Synthesis and applications. By partitioning field margins from the remainder of the field, economically viable intensive grassland management can be combined with extensive management aimed at promoting native biodiversity. The absence of inorganic fertilizer, combined with a reduction in the intensity of both cutting and grazing regimes, promotes floral species richness and sward architectural complexity. By increasing sward architecture the total biomass of invertebrates also increased (by c. 60% across the range of sward architectural measures seen in this study), increasing food available for higher trophic levels, such as birds and mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Fig trees (Ficus) are pollinated only by agaonid wasps, whose larvae also gall fig ovules. Each ovule develops into either a seed (when pollinated) or a wasp (when an egg is also laid inside) but not both. 2. Ovipositing wasps (foundresses) favour ovules near the centre of the enclosed inflorescence (syconium or 'fig'), leaving ovules near the outer wall to develop into seeds. This spatial stratification of wasps and seeds ensures reproduction in both partners, and thereby enables mutualism persistence. However, the mechanism(s) responsible remain(s) unknown. 3. Theory shows that foundresses will search for increasingly rare inner ovules and ignore outer ovules, as long as ovipositing in outer ovules is sufficiently slow and/or if inner ovules confer greater fitness to wasps. The fig-pollinator mutualism can therefore be stabilized by strong time constraints on foundresses and by offspring fitness gradients over variation in ovule position. 4. Female fig wasps cannot leave their galls without male assistance. We found that females in outer ovules were unlikely to be released. Inner ovules thus have added value to foundresses, because their female offspring are more likely to mate and disperse. 5. For those offspring that did emerge, gall position (inner/outer) and body size did not influence the order in which female pollinators exited syconia, nor did early emerging wasps enjoy increased life spans. 6. We also found that the life spans of female wasps nearly doubled when given access to moisture. We suggest that conflict resolution in the fig-pollinator mutualism may thus be influenced by tropical seasonality, because wasps may be less able to over-exploit ovules in dry periods due to time constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has recently been proposed that life-history evolution is subject to a fundamental size-dependent constraint. This constraint limits the rate at which biomass can be produced so that production per unit of body mass is inevitably slower in larger organisms than in smaller ones. Here we derive predictions for how changes in body size and production rates evolve in different lifestyles subject to this constraint. Predictions are tested by using data on the mass of neonate tissue produced per adult per year in 637 placental mammal species and are generally supported. Compared with terrestrial insectivores with generalized primitive traits, mammals that have evolved more specialized lifestyles have divergent massspecific production rates: (i) increased in groups that specialize on abundant and reliable foods: grazing and browsing herbivores (artiodactyls, lagomorphs, perissoclactyls, and folivorous rodents) and flesh-eating marine mammals (pinnipeds, cetaceans); and (ii) decreased in groups that have lifestyles with reduced death rates: bats, primates, arboreal, fossorial, and desert rodents, bears, elephants, and rhinos. Convergent evolution of groups with similar lifestyles is common, so patterns of productivity across mammalian taxa reflect both ecology and phylogeny. The overall result is that groups with different lifestyles have parallel but offset relationships between production rate and body size. These results shed light on the evolution of the fast-slow life-history continuum, suggesting that variation occurs along two axes corresponding to body size and lifestyle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To describe the geographical pattern of mean body size of the non-volant mammals of the Nearctic and Neotropics and evaluate the influence of five environmental variables that are likely to affect body size gradients. Location: The Western Hemisphere. Methods: We calculated mean body size (average log mass) values in 110 × 110 km cells covering the continental Nearctic and Neotropics. We also generated cell averages for mean annual temperature, range in elevation, their interaction, actual evapotranspiration, and the global vegetation index and its coefficient of variation. Associations between mean body size and environmental variables were tested with simple correlations and ordinary least squares multiple regression, complemented with spatial autocorrelation analyses and split-line regression. We evaluated the relative support for each multiple-regression model using AIC. Results: Mean body size increases to the north in the Nearctic and is negatively correlated with temperature. In contrast, across the Neotropics mammals are largest in the tropical and subtropical lowlands and smaller in the Andes, generating a positive correlation with temperature. Finally, body size and temperature are nonlinearly related in both regions, and split-line linear regression found temperature thresholds marking clear shifts in these relationships (Nearctic 10.9 °C; Neotropics 12.6 °C). The increase in body sizes with decreasing temperature is strongest in the northern Nearctic, whereas a decrease in body size in mountains dominates the body size gradients in the warmer parts of both regions. Main conclusions: We confirm previous work finding strong broad-scale Bergmann trends in cold macroclimates but not in warmer areas. For the latter regions (i.e. the southern Nearctic and the Neotropics), our analyses also suggest that both local and broad-scale patterns of mammal body size variation are influenced in part by the strong mesoscale climatic gradients existing in mountainous areas. A likely explanation is that reduced habitat sizes in mountains limit the presence of larger-sized mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extinction of dinosaurs at the Cretaceous/Paleogene (K/Pg) boundary was the seminal event that opened the door for the subsequent diversification of terrestrial mammals. Our compilation of maximum body size at the ordinal level by sub-epoch shows a near-exponential increase after the K/Pg. On each continent, the maximum size of mammals leveled off after 40 million years ago and thereafter remained approximately constant. There was remarkable congruence in the rate, trajectory, and upper limit across continents, orders, and trophic guilds, despite differences in geological and climatic history, turnover of lineages, and ecological variation. Our analysis suggests that although the primary driver for the evolution of giant mammals was diversification to fill ecological niches, environmental temperature and land area may have ultimately constrained the maximum size achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Large female insects usually have high potential fecundity. Therefore selection should favour an increase in body size given that these females get opportunities to realize their potential advantage by maturing and laying more eggs. However, ectotherm physiology is strongly temperature-dependent, and activities are carried out sufficiently only within certain temperature ranges. Thus it remains unclear if the fecundity advantage of a large size is fully realized in natural environments, where thermal conditions are limiting. 2. Insect fecundity might be limited by temperature at two levels; first eggs need to mature, and then the female needs time for strategic ovipositing of the egg. Since a female cannot foresee the number of oviposition opportunities that she will encounter on a given day, the optimal rate of egg maturation will be governed by trade-offs associated with egg- and time-limited oviposition. As females of different sizes will have different amounts of body reserves, size-dependent allocation trade-offs between the mother’s condition and her egg production might be expected. 3. In the temperate butterfly Pararge aegeria , the time and temperature dependence of oviposition and egg maturation, and the interrelatedness of these two processes were investigated in a series of laboratory experiments, allowing a decoupling of the time budgets for the respective processes. 4. The results show that realized fecundity of this species can be limited by both the temperature dependence of egg maturation and oviposition under certain thermal regimes. Furthermore, rates of oviposition and egg maturation seemed to have regulatory effects upon each other. Early reproductive output was correlated with short life span, indicating a cost of reproduction. Finally, large females matured more eggs than small females when deprived of oviposition opportunities. Thus, the optimal allocation of resources to egg production seems dependent on female size. 5. This study highlights the complexity of processes underlying rates of egg maturation and oviposition in ectotherms under natural conditions. We further discuss the importance of temperature variation for egg- vs. time-limited fecundity and the consequences for the evolution of female body size in insects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding patterns in predator:prey systems and the mechanisms that underlie trophic interactions provides a basis for predicting community structure and the delivery of natural pest control services. The functional response of predators to prey density is a fundamental measure of interaction strength and its characterisation is essential to understanding these processes. We used mesocosm experiments to quantify the functional responses of five ground beetle species that represent common generalist predators of north-west European arable agriculture. We investigated two mechanisms predicted to be key drivers of trophic interactions in natural communities: predator:prey body size ratio and multiple predator effects. Our results show regularities in foraging patterns characteristic of similarly sized predators. Ground beetle attack rates increased and handling times decreased as the predator:prey body-mass ratio rose. Multiple predator effects on total prey consumption rates were sensitive to the identity of the interacting species but not prey density. The extent of interspecific interactions may be a result of differences in body mass between competing beetle species. Overall these results add to the growing evidence for the importance of size in determining trophic interactions and suggest that body mass could offer a focus on which to base the management of natural enemy assemblages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic ecologists have studied the distribution of animal body sizes because it is a form of ‘taxon-free’ classification that may be a useful metric for describing variation within and between ecological communities. In particular, the idea that the allometry of physiological and life-history traits may control species composition and relative abundances implies a functional link between body-size distributions and communities. The physical structure of aquatic habitats has often been cited as the mechanism by which habitat may determine body-size distributions in communities. However, further progress is hindered by a lack of theoretical clarity regarding the mechanisms that connect body size to the characteristics of ecological communities, leading to methods that may obscure interesting trends in body-size data. This review examines the methodological and conceptual issues hindering progress in the search for a relationship between animal body size and habitat architecture and suggests ways to resolve these issues. Problems are identified with current methods for the measurement of animal body size, the data and measures used to quantify body-size distributions and the methods used to identify patterns therein. Fundamentally, renewed emphasis on the mechanisms by which animal body sizes are influenced by habitat architecture is required to refine methodology and synthesise results from pattern-seeking and mechanistic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated factors related to the perceptual disturbances of body image. Using a digital body image computer program, 191 participants (107 women, 82 men) adjusted an image of their body to the perceived actual size at five body regions; chest, waist, hips, thighs and calves. A neutral object (a vase) was also adjusted to partial out the level of perceptual distortion present with a neutral object. Men and women overestimated the size of the neutral object and their body image. Among women, overestimation was primarily predicted by high levels of depression, and media and peer influences to be thinner and increase muscles. Among men, overestimation was predicted by high BMI, media influences to lose weight and increase muscles, and peer influences to increase muscles. These findings suggest that perceptual accuracy of body image is primarily predicted by biopsychosocial influences.