991 resultados para block structure
Resumo:
RAFT polymerization was used to prepare PMMA-b-PNIPAM copolymers. Two different chain transfer agents, tBDB and MCPDB, were used to mediate the sequential polymerizations. Micellar solutions and gels were prepared from the resulting copolymers in aqueous solution. When heated above T-c of PNIPAM (about 31 degrees C), DLS revealed that PNIPAM coronas collapsed, resulting in aggregation of the original micelles. The micellar gels underwent syneresis above T-c as water was expelled from the ordered gel structure, the lattice periodicity of which was determined by SANS. A large decrease in lattice spacing was observed above T-c. The gel became more viscoelastic at high temperature, as revealed by shear rheometry which showed a large increase in G".
Resumo:
A polystyrene-block-poly(ferrocenylethylmethylsilane) diblock copolymer, displaying a double-gyroid morphology when self-assembled in the solid state, has been prepared with a PFEMS volume fraction phi(PFMS)=0.39 and a total molecular weight of 64 000 Da by sequential living anionic polymerisation. A block copolymer with a metal-containing block with iron and silicon in the main chain was selected due to its plasma etch resistance compared to the organic block. Self-assembly of the diblock copolymer in the bulk showed a stable, double-gyroid morphology as characterised by TEM. SAXS confirmed that the structure belonged to the Ia3d space group.
Resumo:
Little has so far been reported on the robustness of non-orthogonal space-time block codes (NO-STBCs) over highly correlated channels (HCC). Some of the existing NO-STBCs are indeed weak in robustness against HCC. With a view to overcoming such a limitation, a generalisation of the existing robust NO-STBCs based on a 'matrix Alamouti (MA)' structure is presented.
Resumo:
An atomic force microscopy investigation was carried out on various thick (30–120 nm) polymethyl methacrylate-bpolystyrene and poly(2-(dimethyl amino)ethyl methacrylate)-b-polystyrene films prepared via a grafting-from method. The structure of the films was examined with both topographic and phase imaging. Several different morphologies were observed including a perforated lamellar phase with irregular perforations. In addition, complementary small-angle X-ray scattering and reflectometry results measurements on a non-grafted polymer are presented.
Resumo:
The thermal properties, crystallization, and morphology of amphiphilic poly(D-lactide)-b-poly(N,N-dimethylamino- 2-ethyl methacrylate) (PDLA-b-PDMAEMA) and poly (L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PLLA-b-PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA-b-PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk-shape structure and, for high molecular weight samples, the particles displayed unusual star-like shape morphology.
Resumo:
The phase behavior of grafted d-polystyrene-block-poly(methyl methacrylate) diblock copolymer films is examined, with particular focus on the effect of solvent and annealing time. It was observed that the films undergo a two-step transformation from an initially disordered state, through an ordered metastable state, to the final equilibrium configuration. It was also found that altering the solvent used to wash the films, or complete removal of the solvent prior to thermal annealing using supercritical CO2, could influence the structure of the films in the metastable state, though the final equilibrium state was unaffected. To aid in the understanding to these experimental results, a series of self-consistent field theory calculations were done on a model diblock copolymer brush containing solvent. Of the different models examined, those which contained a solvent selective for the grafted polymer block most accurately matched the observed experimental behavior. We hypothesize that the structure of the films in the metastable state results from solvent enrichment of the film near the film/substrate interface in the case of films washed with solvent or faster relaxation of the nongrafted block for supercritical CO2 treated (solvent free) films. The persistence of the metastable structures was attributed to the slow reorganization of the polymer chains in the absence of solvent.
Resumo:
Intimin and EspA proteins are virulence factors expressed by attaching and effacing Escherichia coli (AEEC) such as enteropathogenic and enterohaemorrhagic E. coli. The EspA protein makes up a filament structure forming part of the type III secretion system (TTSS) that delivers effector proteins to the host epithelial cell. Bacterial surface displayed intimin interacts with translocated intimin receptor in the host cell membrane leading to intimate attachment of the bacterium and subsequent attaching and effacing lesions. Here, we have assessed the use of recombinant monoclonal antibodies against E. coli O157:147 EspA and intimin for the disruption of AEEC interaction with the host cell. Anti-gamma intimin antibodies did not reduce either adhesion of E. coli O157:H7 to host cell mono-layers or subsequent host cell actin rearrangement. Anti-EspA antibodies similarly had no effect on bacterial adhesion however they had a marked effect upon E. coli O157:H7-induced host cell actin rearrangement, where both monoclonal and polyclonal antibodies completely blocked cytoskeletal changes within the host cell. Furthermore, these anti-EspA antibodies were shown to reduce actin rearrangement induced by some but not all other AEEC serotypes tested. Both polyclonal and monoclonal antibodies could be used to label E. coli O157 EspA filaments and these immunoreagents did not inhibit the formation of such filaments. This is the first report of monoclonal antibodies to EspA capable of disrupting the TTSS function of E. coli O157:H7. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
The new thiogallate Na5(Ga4S)(GaS4)3·6H2O has been prepared solvothermally, using 3,5-dimethyl pyridine as a solvent, and characterised by powder and single crystal X-ray diffraction. This material, which exhibits a three-dimensional crystal structure, crystallises in the cubic space group View the MathML sourceF4¯3c (a = 17.557(4) Å). The crystal structure contains octahedral building blocks [Ga4S (GaS4)6]20−, linked into a three-dimensional network with a perovskite-type topology, and sodium hydrate clusters, [Na5(H2O)6]5+, filling the cavities in the [Ga4S(GaS4)6/2]5− framework. UV–Vis diffuse reflectance measurements indicate that this material is a wide band gap semiconductor, with a band gap of ca. 4.4 eV.
Resumo:
In this study we report detailed information on the internal structure of PNIPAM-b-PEG-b-PNIPAM nanoparticles formed from self-assembly in aqueous solutions upon increase in temperature. NMR spectroscopy, light scattering and small-angle neutron scattering (SANS) were used to monitor different stages of nanoparticle formation as a function of temperature, providing insight into the fundamental processes involved. The presence of PEG in a copolymer structure significantly affects the formation of nanoparticles, making their transition to occur over a broader temperature range. The crucial parameter that controls the transition is the ratio of PEG/PNIPAM. For pure PNIPAM, the transition is sharp; the higher the PEG/PNIPAM ratio results in a broader transition. This behavior is explained by different mechanisms of PNIPAM block incorporation during nanoparticle formation at different PEG/PNIPAM ratios. Contrast variation experiments using SANS show that the structure of nanoparticles above cloud point temperatures for PNIPAM-b-PEG-b-PNIPAM copolymers is drastically different from the structure of PNIPAM mesoglobules. In contrast with pure PNIPAM mesoglobules, where solid-like particles and chain network with a mesh size of 1-3 nm are present; nanoparticles formed from PNIPAM-b-PEG-b-PNIPAM copolymers have non-uniform structure with “frozen” areas interconnected by single chains in Gaussian conformation. SANS data with deuterated “invisible” PEG blocks imply that PEG is uniformly distributed inside of a nanoparticle. It is kinetically flexible PEG blocks which affect the nanoparticle formation by prevention of PNIPAM microphase separation.
Resumo:
The molecular architecture of azopolymers may be controlled via chemical synthesis and with selection of a suitable film-forming method, which is important for improving their properties for practical uses. Here we address the main challenge of combining the photoinduced birefringence features of azopolymers with the higher thermal and mechanical stabilities of poly(methyl methacrylate) (PMMA) using Atom Transfer Radical Polymerization (ATRP) to synthesize diblock- and triblock-copolymers of an azomonomer and the monomer methyl methacrylate. Langmuir-Blodgett (LB) films made with the copolymers mixed with cadmium stearate displayed essentially the same optically induced birefringence characteristics, in terms of maximum and residual birefringence and time for writing, as the mixed LB films with the homopolymer poly[4-(N-ethyl-N-(2-methacryloxyethyl))amino-2`-chloro-4`-nitroazobenzene] (HPDR13), also synthesized via ATRP. In fact, the controlled architecture of HPDR13 chains led to Langmuir films that could be more closely packed and reach higher collapse pressures than the corresponding films obtained with HPDR13-conv synthesized via conventional radicalar polymerization. This allowed LB films to be fabricated from neat HPDR13, which was not possible with HPDR13-conv. The enhanced organization in the LB films produced with controlled azopolymer chains, however, led to a smaller free volume available for isomerization of the azochromophores, thus yielding a lower photoinduced birefringence than in the HPDR13-conv films. The combination of ATRP synthesis and LB technology is then promising to obtain optical storage in films with improved thermal and mechanical processabilities, though a further degree of control must be sought to exploit film organization while maintaining the necessary free volume in the films. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A novel Schiff base-copper(II) complex [Cu(2)L(2)(N(3))(2)](ClO(4))(2) 1, where L = (4-imidazolyl)ethylene-2-amino-1-ethylpyridine (apyhist), containing azide-bridges between adjacent copper ions in a dinuclear arrangement was isolated and characterized both in the solid state and in solution by X-ray crystallography and different spectroscopic techniques. Azide binding constants were estimated from titrations of the precursor [CuL(H(2)O)(2)](2+) solutions with sodium azide, giving rise to the azido-bridged species, [Cu(2)L(2)(N(3))(2)](2+). Raman spectra showed asymmetric stretching band at 2060 cm(-1), indicating the presence of azido ligands with a symmetric mu(1,) (1) binding geometry. EPA spectra, in frozen methanol/water solutions at 77 K, exhibited characteristic features of copper centers in tetragonal pyramidal coordination geometry, exhibiting magnetic interactions between them. Further, in solid state, two different values for magnetic coupling in this species were obtained, J/k = -(5.14 +/- 0.02) cm(-1) attributed to the mu(1, 1) azide-bridge mode, and J`z`/k = -(2.94 +/- 0.11) cm(-1) for the interaction between dinuclear moieties via water/perchorate bridges. Finally, an attempt was made to correlate structure and magnetic data for this dinuclear asymmetric end-on azido bridged-copper(II) 1 complex with those of another correlated dinuclear system, complex [Cu(2)L(2)Cl(2)](ClO(4))(2) 2, containing the same tridentate diimine ligand, but with chloro-bridged groups between the copper centres.
Resumo:
The objective of this study was to assess the sward canopy structure of Brachiaria brizantha cv. Marandu pastures maintained in three grazing intensities under continuous stocking system during the rainy season, along with the behavior and performance of grazing beef heifers supplemented with mineral salt or an energy/protein supplement. Three levels of forage allowance were assessed: 2.0, 2.5 and 3.0 kg of forage/kg of live weight, combined with two supplements (ad libitum mineral salt, and an energy/protein supplement at 0.3% of live weight/day, supplied daily). The experiment was designed as a randomized block study with two replications. The supplements did not influence the variables related to the canopy structure. Canopy height was greater at higher forage allowances during the late summer and early fall. Similarly, the stem mass was greater in pastures with higher forage allowances. Animals fed protein supplement spent less time grazing than animals supplemented with mineral salt. Stocking rate was higher in pastures with lower forage allowance levels, which increased the live weight gain per grazing area. Daily weight gain did not vary according to the forage allowance levels. The use of an energy/protein supplement did not affect the stocking rate; however, it increased individual live weight gain and live weight gain per grazing area compared with mineral salt supplementation. The use of energy/protein supplements is an efficient alternative to enhance animal performance and production under grazing systems during the rainy season
Resumo:
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger-fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane em,, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behaviour. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P 1-30 was estimated by measuring the permeability PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the PEGs of different pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St 11 conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)