998 resultados para bismuth layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mineralogical survey of chondritic interplanetary dust particles (IDPs)showed that these micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class1. Models of chondritic IDP mineral evolution generally ignore the typical (ultra-) fine grain size of consituent minerals which range between 0.002-0.1µm in size2. The chondritic porous (CP) subset of chondritic IDPs is probably debris from short period comets although evidence for a cometary origin is still circumstantial3. If CP IDPs represent dust from regions of the Solar System in which comet accretion occurred, it can be argued that pervasive mineralogical evolution of IDP dust has been arrested due to cryogenic storage in comet nuclei. Thus, preservation in CP IDPs of "unusual meteorite minerals", such as oxides of tin, bismuth and titanium4, should not be dismissed casually. These minerals may contain specific information about processes that occurred in regions of the solar nebula, and early Solar System, which spawned the IDP parent bodies such as comets and C, P and D asteroids6. It is not fully appreciated that the apparent disparity between the mineralogy of CP IDPs and carbonaceous chondrite matrix may also be caused by the choice of electron-beam techniques with different analytical resolution. For example, Mg-Si-Fe distributions of Cl matrix obtained by "defocussed beam" microprobe analyses are displaced towards lower Fe-values when using analytical electron microscope (AEM)data which resolve individual mineral grains of various layer silicates and magnetite in the same matrix6,7. In general, "unusual meteorite minerals" in chondritic IDPs, such as metallic titanium, Tin01-n(Magneli phases) and anatase8 add to the mineral data base of fine-grained Solar System materials and provide constraints on processes that occurred in the early Solar System.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synthesis is presented of the predictive capability of a family of near-wall wall-normal free Reynolds stress models (which are completely independent of wall topology, i.e., of the distance fromthe wall and the normal-to-thewall orientation) for oblique-shock-wave/turbulent-boundary-layer interactions. For the purpose of comparison, results are also presented using a standard low turbulence Reynolds number k–ε closure and a Reynolds stress model that uses geometric wall normals and wall distances. Studied shock-wave Mach numbers are in the range MSW = 2.85–2.9 and incoming boundary-layer-thickness Reynolds numbers are in the range Reδ0 = 1–2×106. Computations were carefully checked for grid convergence. Comparison with measurements shows satisfactory agreement, improving on results obtained using a k–ε model, and highlights the relative importance of redistribution and diffusion closures, indicating directions for future modeling work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of inflow turbulence on the results of Favre–Reynolds-averaged Navier–Stokes computations of supersonic oblique-shock-wave/turbulent-boundary-layer interactions (shock-wave Mach-number MSW ∼2.9), using seven-equation Reynolds-stress model turbulence closures, is studied. The generation of inflow conditions (and the initialization of the flowfield) for mean flow, Reynolds stresses, and turbulence length scale, based on semi-analytic grid-independent boundary-layer profiles, is described in detail. Particular emphasis is given to freestream turbulence intensity and length scale. The influence of external-flow turbulence intensity is studied in detail both for flat-plate boundary-layer flow and for a compression-ramp interaction with large separation. It is concluded that the Reynolds-stress model correctly reproduces the effects of external flow turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platey grains of cubic Bi2O3, α-Bi2O3, and Bi2O2.75 nanograins were associated with chondritic porous interplanetary dust particles W7029C1, W7029E5, and 2011C2 that were collected in the stratosphere at 17-19 km altitude. Similar Bi oxide nanograins were present in the upper stratosphere during May 1985. These grains are linked to the plumes of several major volcanic eruptions during the early 1980s that injected material into the stratosphere. The mass of sulfur from these eruptions is a proxy for the mass of stratospheric Bi from which we derive the particle number densities (p m -3) for "average Bi2O3 nanograins" due to this volcanic activity and those necessary to contaminate the extraterrestrial chondritic porous interplanetary dust particles via collisional sticking. The match between both values supports the idea that Bi2O3 nanograins of volcanic origin could contaminate interplanetary dust particles in the Earth's stratosphere. Copyright 1997 by the American Geophysical Union.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure of Bi-Sr-Ca-Cu-oxide (BSCCO) thick films on alumina substrates has been characterized using a combination of X-ray diffractometry, scanning electron microscopy, transmission electron microscopy of sections across the film/substrate interface and energy-dispersive X-ray spectrometry. A reaction layer formed between the BSCCO films and the alumina substrates. This chemical interaction is largely responsible for off-stoichiometry of the films and is more significant after partial melting of the films. A new phase with fee structure, lattice parameter a = 2.45 nm and approximate composition Al3Sr2CaBi2CuOx has been identified as reaction product between BSCCO and Al2O3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five basalt samples from the Point Sal ophiolite, California, were examined using HRTEM and AEM in order to compare observations with interpretations of XRD patterns and microprobe analyses. XRD data from ethylene-glycol-saturated samples indicate the following percentages of chlorite in mixed-layer chlorite-smectite identified for each specimen: (i) L2036 almost-equal-to 50%, (ii) L2035 almost-equal-to 70 and 20%, (iii) 1A-13 almost-equal-to 70%, (iv) 1B-42 almost-equal-to 70%, and (v) 1B-55 = 100%. Detailed electron microprobe analyses show that 'chlorite' analyses with high Si, K, Na and Ca contents are the result of interlayering with smectite-like layers. The Fe/(Fe + Mg) ratios of mixed-layer phyllosilicates from Point Sal samples are influenced by the bulk rock composition, not by the percentage of chlorite nor the structure of the phyllosilicate. Measurements of lattice-fringe images indicate that both smectite and chlorite layers are present in the Point Sal samples in abundances similar to those predicted with XRD techniques and that regular alternation of chlorite and smectite occurs at the unit-cell scale. Both 10- and 14-angstrom layers were recorded with HRTEM and interpreted to be smectite and chlorite, respectively. Regular alternation of chlorite and smectite (24-angstrom periodicity) occurs in upper lava samples L2036 and 1A-13, and lower lava sample 1B-42 for as many as seven alternations per crystallite with local layer mistakes. Sample L2035 shows disordered alternation of chlorite and smectite, with juxtaposition of smectite-like layers, suggesting that randomly interlayered chlorite (< 0.5)-smectite exists. Images of lower lava sample 1B-55 show predominantly 14-angstrom layers. Units of 24 angstrom tend to cluster in what may otherwise appear to be disordered mixtures, suggesting the existence of a corrensite end-member having thermodynamic significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HRTEM has been used to examine illite/smectite from the Mancos shale, rectorite from Garland County, Arkansas; illite from Silver Hill, Montana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic chlorite from the Tuscaloosa formation. Thin specimens were prepared by ion milling, ultra-microtome sectioning and/or grain dispersal on a porous carbon substrate. Some smectite-bearing clays were also examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH proved to be a reliable method of HRTEM imaging of expanded smectite, d(001) 16 A which could then be distinguished from unexpanded illite, d(001) 10 A. Lattice fringes of basal spacings of DH-intercalated rectorite and illite/smectite showed 26 A periodicity. These data support XRD studies which suggest that these samples are ordered, interstratified varieties of illite and smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10 A and 14 A basal spacings corresponding with collapsed smectite and chlorite, respectively. Regions containing disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of smectite and chlorite were not common. These HRTEM observations of corrensite did not corroborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many particles showed basal dimensions equivalent to > five layers. -J.M.H.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25C) after aggregate formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence ... SBBSBB. ... Electron diffraction and imaging techniques show that the basal periodicity is ~ 17 Å. Discrete crystals of SBB-type material are typically curved, of small size (<1 μm) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of preexisting material is not yet apparent. © 1982.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein the mechanical properties of graphene, including Young’s modulus, fracture stress and fracture strain have been investigated by molecular dynamics simulations. The simulation results show that the mechanical properties of graphene are sensitive to the temperature changes but insensitive to the layer numbers in the multilayer graphene. Increasing temperature exerts adverse and significant effects on the mechanical properties of graphene. However, the adverse effect produced by the increasing layer number is marginal. On the other hand, isotope substitutions in graphene play a negligible role in modifying the mechanical properties of graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present how a thin RF sputtered layer of lanthanum oxide (La2O3) can alter electrical and improve hydrogen gas sensing characteristics of Pt/molybdenum oxide (MoO3) nanostructures Schottky diodes. We derived the barrier height, ideality factor and dielectric constant from the measured I–V characteristics at operating temperatures in the range of 25–300 ◦C. The dynamic response, response and recovery times were obtained upon exposure to hydrogen gas at different concentrations. Analysis of the results indicated a substantial improvement to the voltage shift sensitivity of the sensors incorporating the La2O3 layer. We associate this enhancement to the formation of numerous trap states due to the presence of the La2O3 thin film on the MoO3 nanoplatelets. These trap states increase the intensity of the dipolar charges at the metal–semiconductor interface, which induce greater bending of the energy bands. However, results also indicate that the presence of La2O3 trap states also increases response and recover times as electrons trapping and de-trapping processes occur before they can pass through this thin dielectric layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we investigate how hydrogen sensing performance of thermally evaporated MoO3 nanoplatelets can be further improved by RF sputtering a thin layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We show that dissociated hydrogen atoms cause the thin film layer to be polarised, inducing a measurable potential difference greater than that as reported previously. We attribute these observations to the presence of numerous traps in the thin layer; their states allow a stronger trapping of charge at the Pt-thin film oxide interface as compared to the MoO3 sensors without the coating. Under exposure to H2 (10 000 ppm) the maximum change in dielectric constant of 45.6 (at 260 °C) for the Ta2O5/MoO3 nanoplatelets and 31.6 (at 220 °C) for La2O3/MoO3 nanoplatelets. Subsequently, the maximum sensitivity for the Ta2O5/MoO3 is 16.87 (at 260 °C) and La2O3/MoO3 is 7.52 (at 300 °C).