904 resultados para bioreactor chambers
Resumo:
The alignment system for the muon spectrometer of the CMS detector comprises three independent subsystems of optical and analog position sensors. It aligns muon chambers with respect to each other and to the central silicon tracker. System commissioning at full magnetic field began in 2008 during an extended cosmic ray run. The system succeeded in tracking muon detector movements of up to 18 mm and rotations of several milliradians under magnetic forces. Depending on coordinate and subsystem, the system achieved chamber alignment precisions of 140-350 μm and 30-200 μrad, close to the precision requirements of the experiment. Systematic errors on absolute positions are estimated to be 340-590 μm based on comparisons with independent photogrammetry measurements. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
Some wild species of the genus Arachis have demonstrated potential for improvement of peanuts. This work was performed to evaluate the occurrence and symptoms of Enneothrips flavens and Stegasta bosquella and its effects on agronomic traits of wild Arachis accessions. Nine accessions of wild Arachis species and a commercial A. hypogaea variety were studied in a split plot statistical scheme with a completely randomized block design and four replications. The main plots consisted of plants sprayed or not sprayed for insect control, while the subplots comprised the peanut accessions. Accessions GKP10017 (A. cardenasii) and V7639 (A. kuhlmannii) showed the lowest percentages of leaflets with E. flavens and S. bosquella. Accessions V9912, V7639 and V8979 (all three A. kuhlmannii) and V13250 (A. kempff-mercadoi) showed the lowest responses to insecticide application among the various plant traits evaluated. These accessions are of interest for further studies to identify mechanisms of resistance, to be used in breeding programs for resistance to these insects.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this study, the flocculation process in continuous systems with chambers in series was analyzed using the classical kinetic model of aggregation and break-up proposed by Argaman and Kaufman, which incorporates two main parameters: K (a) and K (b). Typical values for these parameters were used, i. e., K (a) = 3.68 x 10(-5)-1.83 x 10(-4) and K (b) = 1.83 x 10(-7)-2.30 x 10(-7) s(-1). The analysis consisted of performing simulations of system behavior under different operating conditions, including variations in the number of chambers used and the utilization of fixed or scaled velocity gradients in the units. The response variable analyzed in all simulations was the total retention time necessary to achieve a given flocculation efficiency, which was determined by means of conventional solution methods of nonlinear algebraic equations, corresponding to the material balances on the system. Values for the number of chambers ranging from 1 to 5, velocity gradients of 20-60 s(-1) and flocculation efficiencies of 50-90 % were adopted.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work aimed to evaluate the attractiveness, non-preference for feeding and antibiosis in straight and runner growth habit peanut cultivars to Stegasta bosquella (Chambers). Eight cultivars were evaluated, four of straight growth habit (IAC Tatu, IAC 22, IAC 8112 and IAC 5) and four of runner growth habit (IAC Runner 886, IAC 147, IAC 125 and IAC 503). Free-choice and no-choice feeding tests were performed, using pairs of overlapped leaf discs with 1.0 cm diameter, which were placed in Petri dishes where third instar larvae of S. bosquella were released. The attractiveness to the larvae was assessed in predetermined times, in addition to the dry mass consumed. In the antibiosis assay, the biological parameters were evaluated: period and viability of larvae, pre-pupae, pupae, and total, weight of larvae and pupae, sex ratio and longevity. None of the runner growth habit cultivars exhibited non-preference for feeding-type resistance. Among the straight growth habit cultivars, IAC 5 and IAC 22 were the least attractive and consumed in the free-choice feeding test, and IAC 5 and IAC 8112 were the least attractive in the no-choice test. The runner growth habit cultivars IAC 147 and IAC Runner 886 affected the larval survival of S. bosquella, exhibiting antibiosis-type resistance. For the straight growth habit cultivars, IAC 22 and IAC 8112 affected the larval viability, presenting antibiosis-type resistance. The straight and runner growth habit cultivars did not influence the biological parameters of weight of pupae, sex ratio and longevity of S. bosquella.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A two-stage bioreactor was operated for a period of 140 days in order to develop a post-treatment process based on anaerobic bioxidation of sulfite. This process was designed for simultaneously treating the effluent and biogas of a full-scale UASB reactor, containing significant concentrations of NH4 and H2S, respectively. The system comprised of two horizontal-flow bed-packed reactors operated with different oxygen concentrations. Ammonium present in the effluent was transformed into nitrates in the first aerobic stage. The second anaerobic stage combined the treatment of nitrates in the liquor with the hydrogen sulfide present in the UASB-reactor biogas. Nitrates were consumed with a significant production of sulfate, resulting in a nitrate removal rate of 0.43 kg N m(3) day(-1) and a parts per thousand yen92 % efficiency. Such a removal rate is comparable to those achieved by heterotrophic denitrifying systems. Polymeric forms of sulfur were not detected (elementary sulfur); sulfate was the main product of the sulfide-based denitrifying process. S-sulfate was produced at a rate of about 0.35 kg m(3) day(-1). Sulfur inputs as S-H2S were estimated at about 0.75 kg m(3) day(-1) and Chemical Oxygen Demand (COD) removal rates did not vary significantly during the process. DGGE profiling and 16S rRNA identified Halothiobacillus-like species as the key microorganism supporting this process; such a strain has not yet been previously associated with such bioengineered systems.
Resumo:
OBJECTIVE: Autopsy determination of fatal hemorrhage as the cause of death is often a difficult diagnosis in forensic medicine. No quantitative system for accurately measuring the blood volume in a corpse has been developed. MATERIALS AND METHODS: This article describes the measurement and evaluation of the cross-sectional areas of major blood vessels, of the diameter of the right pulmonary artery, of the volumes of thoracic aorta and spleen on MDCT, and of the volumes of heart chambers on MRI in 65 autopsy-verified cases of fatal hemorrhage or no fatal hemorrhage. RESULTS: Most cases with a cause of death of "fatal hemorrhage" had collapsed vessels. The finding of a collapsed superior vena cava, main pulmonary artery, or right pulmonary artery was 100% specific for fatal hemorrhage. The mean volumes of the thoracic aorta and of each of the heart chambers and the mean cross-sectional areas of all vessels except the inferior vena cava and abdominal aorta were significantly smaller in fatal hemorrhage than in no fatal hemorrhage. CONCLUSION: For the quantitative differentiation of fatal hemorrhage from other causes of death, we propose a three-step algorithm with measurements of the diameter of the right pulmonary artery, the cross-sectional area of the main pulmonary artery, and the volume of the right atrium (specificity, 100%; sensitivity, 95%). However, this algorithm must be corroborated in a prospective study, which would eliminate the limitations of this study. Quantitative postmortem cross-sectional imaging might become a reliable objective method to assess the question of fatal hemorrhage in forensic medicine.
Resumo:
The delivery of oxygen, nutrients, and the removal of waste are essential for cellular survival. Culture systems for 3D bone tissue engineering have addressed this issue by utilizing perfusion flow bioreactors that stimulate osteogenic activity through the delivery of oxygen and nutrients by low-shear fluid flow. It is also well established that bone responds to mechanical stimulation, but may desensitize under continuous loading. While perfusion flow and mechanical stimulation are used to increase cellular survival in vitro, 3D tissue-engineered constructs face additional limitations upon in vivo implantation. As it requires significant amounts of time for vascular infiltration by the host, implants are subject to an increased risk of necrosis. One solution is to introduce tissue-engineered bone that has been pre-vascularized through the co-culture of osteoblasts and endothelial cells on 3D constructs. It is unclear from previous studies: 1) how 3D bone tissue constructs will respond to partitioned mechanical stimulation, 2) how gene expression compares in 2D and in 3D, 3) how co-cultures will affect osteoblast activity, and 4) how perfusion flow will affect co-cultures of osteoblasts and endothelial cells. We have used an integrated approach to address these questions by utilizing mechanical stimulation, perfusion flow, and a co-culture technique to increase the success of 3D bone tissue engineering. We measured gene expression of several osteogenic and angiogenic genes in both 2D and 3D (static culture and mechanical stimulation), as well as in 3D cultures subjected to perfusion flow, mechanical stimulation and partitioned mechanical stimulation. Finally, we co-cultured osteoblasts and endothelial cells on 3D scaffolds and subjected them to long-term incubation in either static culture or under perfusion flow to determine changes in gene expression as well as histological measures of osteogenic and angiogenic activity. We discovered that 2D and 3D osteoblast cultures react differently to shear stress, and that partitioning mechanical stimulation does not affect gene expression in our model. Furthermore, our results suggest that perfusion flow may rescue 3D tissue-engineered constructs from hypoxic-like conditions by reducing hypoxia-specific gene expression and increasing histological indices of both osteogenic and angiogenic activity. Future research to elucidate the mechanisms behind these results may contribute to a more mature bone-like structure that integrates more quickly into host tissue, increasing the potential of bone tissue engineering.
Resumo:
Experimental warming provides a method to determine how an ecosystem will respond to increased temperatures. Northern peatland ecosystems, sensitive to changing climates, provide an excellent setting for experimental warming. Storing great quantities of carbon, northern peatlands play a critical role in regulating global temperatures. Two of the most common methods of experimental warming include open top chambers (OTCs) and infrared (IR) lamps. These warming systems have been used in many ecosystems throughout the world, yet their efficacy to create a warmer environment is variable and has not been widely studied. To date, there has not been a direct, experimentally controlled comparison of OTCs and IR lamps. As a result, a factorial study was implemented to compare the warming efficacy of OTCs and IR lamps and to examine the resulting carbon dioxide (CO2) and methane (CH4) flux rates in a Lake Superior peatland. IR lamps warmed the ecosystem on average by 1-2 #°C, with the majority of warming occurring during nighttime hours. OTC's did not provide any long-term warming above control plots, which is contrary to similar OTC studies at high latitudes. By investigating diurnal heating patterns and micrometeorological variables, we were able to conclude that OTCs were not achieving strong daytime heating peaks and were often cooler than control plots during nighttime hours. Temperate day-length, cloudy and humid conditions, and latent heat loss were factors that inhibited OTC warming. There were no changes in CO2 flux between warming treatments in lawn plots. Gross ecosystem production was significantly greater in IR lamp-hummock plots, while ecosystem respiration was not affected. CH4 flux was not significantly affected by warming treatment. Minimal daytime heating differences, high ambient temperatures, decay resistant substrate, as well as other factors suppressed significant gas flux responses from warming treatments.