921 resultados para biomedical equipment
Resumo:
China is motorizing rapidly, with associated urban road development and extensive construction of motorways. Speeding accounts for about 10% of fatalities, which represents a large decrease from a peak of 17.2% in 2004. Speeding has been addressed at a national level through the introduction of laws and procedural requirements in 2004, in provinces either across all road types or on motorways, and at city level. Typically, documentation of speed enforcement programmes has taken place when new technology (i.e. speed cameras) is introduced, and it is likely that many programmes have not been documented or widely reported. In particular, the national legislation of 2004 and its implementation was associated with a large reduction in fatalities attributed to speeding. In Guangdong Province, after using speed detection equipment, motorway fatalities due to speeding in 2005 decreased by 32.5% comparing with 2004. In Beijing, the number of traffic monitoring units which were used to photograph illegal traffic activities such as traffic light violations, speeding and using bus lanes illegally increased to 1958 by April 1, 2009, and in the future such automated enforcement will become the main means of enforcement, expected to account for 60% of all traffic enforcement in Beijing. This paper provides a brief overview of the speeding enforcement programmes in China which have been documented and their successes.
Resumo:
Bomb technicians perform their work while encapsulated in explosive ordnance disposal (EOD) suits. Designed primarily for safety, these suits have an unintended consequence of impairing the body’s natural mechanisms for heat dissipation. Purpose: To quantify the heat strain encountered during an EOD operational scenario in the tropical north of Australia. Methods: All active police male bomb technicians, located in a tropical region of Australia (n=4, experience 7 ± 2.1 yrs, age 34 ± 2 yrs, height 182.3 ± 5.4 cm, body mass 95 ± 4 kg, VO2max 46 ± 5.7 ml.kg-1.min-1) undertook an operational scenario wearing the Med-Eng EOD 9 suit and helmet (~32 kg). The climatic conditions ranged between 27.1–31.8°C ambient temperature, 66-88% relative humidity, and 30.7-34.3°C wet bulb globe temperature. The scenario involved searching a two story non air-conditioned building for a target; carrying and positioning equipment for taking an X-ray; carrying and positioning equipment to disrupt the target; and finally clearing the site. Core temperature and heart rate were continuously monitored, and were used to calculate a physiological strain index (PSI). Urine specific gravity (USG) assessed hydration status and heat associated symptomology were also recorded. Results: The scenario was completed in 121 ± 22 mins (23.4 ± 0.4% work, 76.5 ± 0.4% rest/recovery). Maximum core temperature (38.4 ± 0.2°C), heart rate (173 ± 5.4 bpm, 94 ± 3.3% max), PSI (7.1 ± 0.4) and USG (1.031 ± 0.002) were all elevated after the simulated operation. Heat associated symptomology highlighted that moderate-severe levels of fatigue and thirst were universally experienced, muscle weakness and heat sensations experienced by 75%, and one bomb technician reported confusion and light-headedness. Conclusion: All bomb technicians demonstrated moderate-high levels of heat strain, evidenced by elevated heart rate, core body temperature and PSI. Severe levels of dehydration and noteworthy heat-related symptoms further highlight the risks to health and safety faced by bomb technicians operating in tropical locations.
Resumo:
Downtime (DT) caused by non-availability of equipment and equipment breakdown has non-trivial impact on the performance of construction projects. Earlier research has often addressed this fact, but it has rarely explained the causes and consequences of DT – especially in the context of developing countries. This paper presents a DT model to address this issue. Using this model, the generic factors and processes related to DT are identified, and the impact of DT is quantified. By applying the model framework to nine road projects in Nepal, the impact of DT is explored in terms of its duration and cost. The research findings highlight how various factors and processes interact with each other to create DT, and mitigate or exacerbate its impact on project performance. It is suggested that construction companies need to adopt proactive equipment management and maintenance programs to minimize the impact of DT.
Resumo:
As a result of growing evidence regarding the effects of environmental characteristics on the health and wellbeing of people in healthcare facilities (HCFs), more emphasis is being placed on, and more attention being paid to, the consequences of design choices in HCFs. Therefore, we have critically reviewed the implications of key indoor physical design parameters, in relation to their potential impact on human health and wellbeing. In addition, we discussed these findings within the context of the relevant guidelines and standards for the design of HCFs. A total of 810 abstracts, which met the inclusion criteria, were identified through a Pubmed search, and these covered journal articles, guidelines, books, reports and monographs in the studied area. Of these, 231 full publications were selected for this review. According to the literature, the most beneficial design elements were: single-bed patient rooms, safe and easily cleaned surface materials, sound-absorbing ceiling tiles, adequate and sufficient ventilation, thermal comfort, natural daylight, control over temperature and lighting, views, exposure and access to nature, and appropriate equipment, tools and furniture. The effects of some design elements, such as lighting (e.g. artificial lighting levels) and layout (e.g. decentralized versus centralized nurses’ stations), on staff and patients vary, and “the best design practice” for each HCF should always be formulated in co-operation with different user groups and a multi-professional design team. The relevant guidelines and standards should also be considered in future design, construction and renovations, in order to produce more favourable physical indoor environments in HCFs.
Resumo:
Alcohol-related driving is a longstanding, serious problem in China (Li, Xie, Nie, & Zhang, 2012). On 1st May, 2011 a national law was introduced to criminalize drunk driving, and imposed serious penalties including jail for driving with a blood alcohol level of above 80mg/100ml. This pilot study, undertaken a year after introduction of the law, sought traffic police officers’ perceptions of drink driving and the practice of breath alcohol testing (BAT) in a large city in Guangdong Province, southern China. A questionnaire survey and semi-structured interviews were used to gain an in-depth understanding of issues relevant to alcohol-related driving. Fifty-five traffic police officers were recruited for the survey and six traffic police officers with a variety of working experience including roadside alcohol breath testing, traffic crash investigation and police resourcing were interviewed individually. The officers were recruited by the first author with the assistance of the staff from Guangdong Institute of Public Health, Centre for Disease Control and Prevention (CDC). Interview participants reported three primary reasons why people drink and drive: 1) being prepared to take the chance of not being apprehended by police; 2) the strong traditional Chinese drinking culture; and 3) insufficient public awareness about the harmfulness of drink driving. Problems associated with the process of breath alcohol testing (BAT) were described and fit broadly into two categories: resourcing and avoiding detection. It was reported that there were insufficient traffic police officers to conduct routine traffic policing, including alcohol testing. Police BAT equipment was considered sufficient for routine traffic situations but not highway traffic operations. Local media and posters are used by the Public Security Bureau which is responsible for education about safe driving but participants thought that the education campaigns are limited in scope. Participants also described detection avoidance strategies used by drivers including: changing route; ignoring a police instruction to stop; staying inside the vehicle with windows and doors locked to avoid being tested; intentionally not performing breath tests correctly; and arguing with officers. This pilot study provided important insights from traffic police in one Chinese city which suggest there may be potential unintended effects of introducing more severe penalties including a range of strategies reportedly used by drivers to avoid detection. Recommendations for future research include a larger study to confirm these findings and examine the training and education of drivers; the focus and reach of publicity; and possible resource needs to support police enforcement.
Resumo:
Biomechanics involves research and analysis of the mechanisms of living organisms. This can be conducted on multiple levels and represents a continuum from the molecular, wherein biomaterials such as collagen and elastin are considered, to the tissue, organ and whole body level. Some simple applications of Newtonian mechanics can supply correct approximations on each level, but precise details demand the use of continuum mechanics. Sport biomechanics uses the scientific methods of mechanics to study the effects of forces on the sports performer and considers aspects of the behaviour of sports implements, equipment, footwear and surfaces. There are two main aims of sport biomechanics, that is, the reduction of injury and the improvement of performance (Bartlett, 1999). Aristotle (384-322 BC) wrote the first book on biomechanics, De Motu Animalium, translated as On the Movement of Animals. He saw animals' bodies as mechanical systems, but also pursued questions that might explain the physiological difference between imagining the performance of an action and actually doing it. Some simple examples of biomechanics research include the investigation of the forces that act on limbs, the aerodynamics of animals in flight, the hydrodynamics of objects moving through water and locomotion in general across all forms of life, from individual cells to whole organisms...
Resumo:
Long term exposure to vehicle emissions has been associated with harmful health effects. Children are amongst the most susceptible group and schools represent an environment where they can experience significant exposure to vehicle emissions. However, there are limited studies on children’s exposure to vehicle emissions in schools. The aim of this study was to quantify the concentration of organic aerosol and in particular, vehicle emissions that children are exposed to during school hours. Therefore an Aerodyne compact time-of-flight aerosol mass spectrometer (TOF-AMS) was deployed at five urban schools in Brisbane, Australia. The TOF-AMS enabled the chemical composition of the non- refractory (NR-PM1) to be analysed with a high temporal resolution to assess the concentration of vehicle emissions and other organic aerosols during school hours. At each school the organic fraction comprised the majority of NR-PM1 with secondary organic aerosols as the main constitute. At two of the schools, a significant source of the organic aerosol (OA) was slightly aged vehicle emissions from nearby highways. More aged and oxidised OA was observed at the other three schools, which also recorded strong biomass burning influences. Primary emissions were found to dominate the OA at only one school which had an O:C ratio of 0.17, due to fuel powered gardening equipment used near the TOF-AMS. The diurnal cycle of OA concentration varied between schools and was found to be at a minimum during school hours. The major organic component that school children were exposed to during school hours was secondary OA. Peak exposure of school children to HOA occurred during school drop off and pick up times. Unless a school is located near major roads, children are exposed predominately to regional secondary OA as opposed to local emissions during schools hours in urban environments.
Resumo:
OBJECTIVE: School-aged youth spend a significant amount of time either in transit to and from school, or within school settings performing a range of varying learning-based activities. Adolescent physical activity has also been shown to increase the likelihood of maintaining physical activity throughout adulthood. The purpose of this study is to investigate adolescents’ perceived school-based barriers and facilitators to engagement in physical activity. METHODS: One-hundred and twenty four participants (38 males and 86 females) were recruited from two non-denominational same-sex private schools, in Brisbane, Australia. The mean age and standard deviation (SD) was 13.83 (0.56) and 14.40 (2.33) for males and females respectively. Participants responded to a series questions regarding perceived barriers and facilitators to engagement in physical activity. Quantitative data was analysed using descriptive statistics and frequency distributions, and qualitative data with thematic analysis. RESULTS: A total of 121 (97.6%) participants had complete data sets and were included in the analysis. School timetable (44.6%), homework (81.8%), and assessment (81.0%) were identified as the most prominent perceived factors, increasing the difficulty of physical activity engagement. Physical Education classes (71.9%) and school sport programs (80.2%) were identified as the most prominent perceived factors that facilitate engagement in physical activity. There was no significant gender effect. CONCLUSIONS: Each of the identified factors perceived by adolescent's as either barriers or facilitators to engagement in physical activity may be addressed by administrators at a school and government policy level. These may include strategies such as; increasing the assigned hours to physical education classes, providing additional extra-curricular sporting opportunities, and reviewing the time allocated to homework and assessment items. This may provide a simpler, low-cost solution to increasing youth physical activity, as opposed to contemporary higher-cost strategies utilising increased staff commitment, mass media, provision of equipment and counsellors and other health professionals.
Resumo:
A procedure for the evaluation of multiple scattering contributions is described, for deep inelastic neutron scattering (DINS) studies using an inverse geometry time-of-flight spectrometer. The accuracy of a Monte Carlo code DINSMS, used to calculate the multiple scattering, is tested by comparison with analytic expressions and with experimental data collected from polythene, polycrystalline graphite and tin samples. It is shown that the Monte Carlo code gives an accurate representation of the measured data and can therefore be used to reliably correct DINS data.
Resumo:
Since the first oil crisis in 1974, economic reasons placed energy saving among the top priorities in most industrialised countries. In the decades that followed, another, equally strong driver for energy saving emerged: climate change caused by anthropogenic emissions, a large fraction of which result from energy generation. Intrinsically linked to energy consumption and its related emissions is another problem: indoor air quality. City dwellers in industrialised nations spend over 90% of their time indoors and exposure to indoor pollutants contributes to ~2.6% of global burden of disease and nearly 2 million premature deaths per year1. Changing climate conditions, together with human expectations of comfortable thermal conditions, elevates building energy requirements for heating, cooling, lighting and the use of other electrical equipment. We believe that these changes elicit a need to understand the nexus between energy consumption and its consequent impact on indoor air quality in urban buildings. In our opinion the key questions are how energy consumption is distributed between different building services, and how the resulting pollution affects indoor air quality. The energy-pollution nexus has clearly been identified in qualitative terms; however the quantification of such a nexus to derive emissions or concentrations per unit energy consumption is still weak, inconclusive and requires forward thinking. Of course, various aspects of energy consumption and indoor air quality have been studied in detail separately, but in-depth, integrated studies of the energy-pollution nexus are hard to come by. We argue that such studies could be instrumental in providing sustainable solutions to maintain the trade-off between the energy efficiency of buildings and acceptable levels of air pollution for healthy living.
Resumo:
Objectives: To identify and appraise the literature concerning nurse-administered procedural sedation and analgesia in the cardiac catheter laboratory. Design and data sources: An integrative review method was chosen for this study. MEDLINE and CINAHL databases as well as The Cochrane Database of Systematic Reviews and the Joanna Briggs Institute were searched. Nineteen research articles and three clinical guidelines were identified. Results: The authors of each study reported nurse-administered sedation in the CCL is safe due to the low incidence of complications. However, a higher percentage of deeply sedated patients were reported to experience complications than moderately sedated patients. To confound this issue, one clinical guideline permits deep sedation without an anaesthetist present, while others recommend against it. All clinical guidelines recommend nurses are educated about sedation concepts. Other findings focus on pain and discomfort and the cost-savings of nurse-administered sedation, which are associated with forgoing anaesthetic services. Conclusions: Practice is varied due to limitations in the evidence and inconsistent clinical practice guidelines. Therefore, recommendations for research and practice have been made. Research topics include determining how and in which circumstances capnography can be used in the CCL, discerning the economic impact of sedation-related complications and developing a set of objectives for nursing education about sedation. For practice, if deep sedation is administered without an anaesthetist present, it is essential nurses are adequately trained and have access to vital equipment such as capnography to monitor ventilation because deeply sedated patients are more likely to experience complications related to sedation. These initiatives will go some way to ensuring patients receiving nurse-administered procedural sedation and analgesia for a procedure in the cardiac catheter laboratory are cared for using consistent, safe and evidence-based practices.
Resumo:
STUDY DESIGN: Reliability and case-control injury study. OBJECTIVES: 1) To determine if a novel device, designed to measure eccentric knee flexors strength via the Nordic hamstring exercise (NHE), displays acceptable test-retest reliability; 2) to determine normative values for eccentric knee flexors strength derived from the device in individuals without a history of hamstring strain injury (HSI) and; 3) to determine if the device could detect weakness in elite athletes with a previous history of unilateral HSI. BACKGROUND: HSIs and reinjuries are the most common cause of lost playing time in a number of sports. Eccentric knee flexors weakness is a major modifiable risk factor for future HSIs, however there is a lack of easily accessible equipment to assess this strength quality. METHODS: Thirty recreationally active males without a history of HSI completed NHEs on the device on 2 separate occasions. Intraclass correlation coefficients (ICCs), typical error (TE), typical error as a co-efficient of variation (%TE), and minimum detectable change at a 95% confidence interval (MDC95) were calculated. Normative strength data were determined using the most reliable measurement. An additional 20 elite athletes with a unilateral history of HSI within the previous 12 months performed NHEs on the device to determine if residual eccentric muscle weakness existed in the previously injured limb. RESULTS: The device displayed high to moderate reliability (ICC = 0.83 to 0.90; TE = 21.7 N to 27.5 N; %TE = 5.8 to 8.5; MDC95 = 76.2 to 60.1 N). Mean±SD normative eccentric flexors strength, based on the uninjured group, was 344.7 ± 61.1 N for the left and 361.2 ± 65.1 N for the right side. The previously injured limbs were 15% weaker than the contralateral uninjured limbs (mean difference = 50.3 N; 95% CI = 25.7 to 74.9N; P < .01), 15% weaker than the normative left limb data (mean difference = 50.0 N; 95% CI = 1.4 to 98.5 N; P = .04) and 18% weaker than the normative right limb data (mean difference = 66.5 N; 95% CI = 18.0 to 115.1 N; P < .01). CONCLUSIONS: The experimental device offers a reliable method to determine eccentric knee flexors strength and strength asymmetry and revealed residual weakness in previously injured elite athletes.
Resumo:
The QUT Outdoor Worker Sun Protection (OWSP) project undertook a comprehensive applied health promotion project to demonstrate the effectiveness of sun protection measures which influence high risk outdoor workers in Queensland to adopt sun safe behaviours. The three year project (2010-2013) was driven by two key concepts: 1) The hierarchy of control, which is used to address risks in the workplace, advocates for six control measures that need to be considered in order of priority (refer to Section 3.4.2); and 2) the Ottawa Charter which recommends five action means to achieve health promotion (refer to Section 2.1). The project framework was underpinned by a participatory action research approach that valued peoples’ input, took advantage of existing skills and resources, and stimulated innovation (refer to Section 4.2). Fourteen workplaces (small and large) with a majority outdoor workforce were recruited across regional Queensland (Darling Downs, Northwest, Mackay and Cairns) from four industries types: 1) building and construction, 2) rural and farming, 3) local government, and 4) public sector. A workplace champion was identified at each workplace and was supported (through resource provision, regular contact and site visits) over a 14 to 18 month intervention period to make sun safety a priority in their workplace. Employees and employers were independently assessed for pre- and postintervention sun protection behaviours. As part of the intervention, an individualised sun safety action plan was developed in conjunction with each workplace to guide changes across six key strategy areas including: 1) Policy (e.g., adopt sun safety practices during all company events); 2) Structural and environmental (e.g., shade on worksites; eliminate or minimise reflective surfaces); 3) Personal protective equipment (PPE) (e.g., trial different types of sunscreens, or wide-brimmed hats); 4) Education and awareness (e.g., include sun safety in inductions and toolbox talks; send reminder emails or text messages to workers);5) Role modelling (e.g., by managers, supervisors, workplace champions and mentors); and 6) Skin examinations (e.g., allow time off work for skin checks). The participatory action process revealed that there was no “one size fits all” approach to sun safety in the workplace; a comprehensive, tailored approach was fundamental. This included providing workplaces with information, resources, skills, know how, incentives and practical help. For example, workplaces engaged in farming complete differing seasonal tasks across the year and needed to prepare for optimal sun safety of their workers during less labour intensive times. In some construction workplaces, long pants were considered a trip hazard and could not be used as part of a PPE strategy. Culture change was difficult to achieve and workplace champions needed guidance on the steps to facilitate this (e.g., influencing leaders through peer support, mentoring and role modelling). With the assistance of the project team the majority of workplaces were able to successfully implement the sun safety strategies contained within their action plans, up skilling them in the evidence for sun safety, how to overcome barriers, how to negotiate with all relevant parties and assess success. The most important enablers to the implementation of a successful action plan were a pro-active workplace champion, strong employee engagement, supportive management, the use of highly visual educational resources, and external support (provided by the project team through regular contact either directly through phone calls or indirectly through emails and e-newsletters). Identified barriers included a lack of time, the multiple roles of workplace champions, (especially among smaller workplaces), competing issues leading to a lack of priority for sun safety, the culture of outdoor workers, and costs or budgeting constraints. The level of sun safety awareness, knowledge, and sun protective behaviours reported by the workers increased between pre-and post-intervention. Of the nine sun protective behaviours that were assessed, the largest changes reported included a 26% increase in workers who “usually or always” wore a broad-brimmed hat, a 20% increase in the use of natural shade, a 19% increase in workers wearing long-sleeved collared shirts, and a 16% increase in workers wearing long trousers.
Resumo:
We present a mini-review of the development and contemporary applications of diffusion-sensitive nuclear magnetic resonance (NMR) techniques in biomedical sciences. Molecular diffusion is a fundamental physical phenomenon present in all biological systems. Due to the connection between experimentally measured diffusion metrics and the microscopic environment sensed by the diffusing molecules, diffusion measurements can be used for characterisation of molecular size, molecular binding and association, and the morphology of biological tissues. The emergence of magnetic resonance was instrumental to the development of biomedical applications of diffusion. We discuss the fundamental physical principles of diffusion NMR spectroscopy and diffusion MR imaging. The emphasis is placed on conceptual understanding, historical evolution and practical applications rather than complex technical details. Mathematical description of diffusion is presented to the extent that it is required for the basic understanding of the concepts. We present a wide range of spectroscopic and imaging applications of diffusion magnetic resonance, including colloidal drug delivery vehicles; protein association; characterisation of cell morphology; neural fibre tractography; cardiac imaging; and the imaging of load-bearing connective tissues. This paper is intended as an accessible introduction into the exciting and growing field of diffusion magnetic resonance.
Resumo:
Objectives: We aimed to identify current practice of sun protection and factors associated with effective use in four outdoor worker industries in Queensland, Australia. Methods: Workplaces in four industries with a high proportion of outdoor workers (building/construction, rural/farming, local government, and public sector industries) were identified using an online telephone directory, screened for eligibility, and invited to participant via mail (n=15, recruitment rate 37%). A convenience sample of workers were recruited within each workplace (n=162). Workplaces’ sun protective policies and procedures were identified using interviews and policy analysis with workplace representatives, and discussion groups and computer-assisted telephone interviews with workers. Personal characteristics and sun protection knowledge, attitudes and behaviors were collated and analysed. Results: Just over half the workplaces had an existing policy which referred to sun protection (58%), and most provided at least some personal protective equipment (PPE), but few scheduled work outside peak sun hours (43%) or provided skin checks (21%). Several worker and workplace characteristics were associated with greater sun protection behaviour among workers, including having received education on the use of PPE (p<0.001), being concerned about being in the sun (p=0.002); and working in a smaller workplace (p=0.035). Conclusions: Uptake of sun protection by outdoor workers is affected by a complex interplay of both workplace and personal factors, and there is a need for effective strategies targeting both the workplace environment and workers’ knowledge, attitudes and behaviors to decrease harmful sun exposure further.