988 resultados para biomass productivity
Resumo:
Maize (Zea mays L.) is a chill-susceptible crop cultivated in northern latitude environments. The detrimental effects of cold on growth and photosynthetic activity have long been established. However, a general overview of how important these processes are with respect to the reduction of productivity reported in the field is still lacking. In this study, a model-assisted approach was used to dissect variations in productivity under suboptimal temperatures and quantify the relative contributions of light interception (PARc) and radiation use efficiency (RUE) from emergence to flowering. A combination of architectural and light transfer models was used to calculate light interception in three field experiments with two cold-tolerant lines and at two sowing dates. Model assessment confirmed that the approach was suitable to infer light interception. Biomass production was strongly affected by early sowings. RUE was identified as the main cause of biomass reduction during cold events. Furthermore, PARc explained most of the variability observed at flowering, its relative contributions being more or less important according to the climate experienced. Cold temperatures resulted in lower PARc, mainly because final leaf length and width were significantly reduced for all leaves emerging after the first cold occurrence. These results confirm that virtual plants can be useful as fine phenotyping tools. A scheme of action of cold on leaf expansion, light interception and radiation use efficiency is discussed with a view towards helping breeders define relevant selection criteria. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.
Resumo:
Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.
Resumo:
The adoption of dry direct seeding of rice in many Asian countries has resulted in increased interest among weed scientists to improve weed management strategies, because of the large and complex weed flora associated with dry-seeded rice (DSR). Tillage and cover cropping practices can be integrated into weed management strategies as these have been known to affect weed emergence for several ecological reasons. A study was conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to evaluate the effects of tillage, cover cropping, and herbicides on weed growth and grain yield of DSR. Most of the weed species (Echinochloa crus-galli, Echinochloa colona, Eleusine indica, and Euphorbia hirta) under study tended to populate the cover crop (CC) treatment more than the no-cover crop (no-CC) treatment. Zero tillage (ZT) resulted in higher weed densities of most of the weed species studied. The interaction effects of these treatments suggest that lesser herbicide efficacy in ZT and CC plots led to higher weed pressure and weed biomass. Grain yield was significantly higher in the conventional tillage system (2.40–3.32 t ha−1), because of lesser weed pressure, than in ZT (2.08–2.73 t ha−1). Almost all weed species increased in number and biomass production in the second year (2013) compared with the preceding year. Herbicide application (pendimethalin followed by bispyribac-sodium) alone, though significantly increased DSR grain yield over that of the unsprayed check, resulted in lesser grain yield compared with the weed-free check (5.07–5.12 t ha−1) by 14% and 27% in 2012 and 2013, respectively. This was mainly due to the buildup of biomass by weeds that escaped from herbicide application. The study reveals that conservation practices such as ZT can form an important component of integrated weed management in DSR, provided that herbicide efficacy be improved by adjusting rate and time of herbicide application in such systems.
Resumo:
SummaryThis scoping study assesses the contribution that woody biomass could make to feedstock supply for an aviation biofuel industry in Queensland. The inland 600?900 mm rainfall zone, including the Fitzroy Basin region, is identified as an area that is particularly worthy of closer study as it has potential for supply of woody biomass from existing native regrowth (brigalow and other species) as well as from new plantings. New analyses carried out for this study of Corymbia citriodora subsp. variegata trials suggest biomass plantings could produce harvestable yield of aboveground dry mass of about 85 t ha?1 over a 10-year rotation at relatively low-rainfall (600?750 mm mean annual precipitation) sites and about 115 t ha?1 at medium-rainfall (750?900 mm) sites. Estimates of productivity for native regrowth suggest potential productivity should be around 40 t ha?1 during the initial decade after clearing when systems are managed for bioenergy rather than grazing. In this paper, potential production systems are described, and sustainability issues are briefly considered. It is concluded that more detailed studies focused particularly on biomass production would be worthwhile, and further research requirements are briefly discussed.
Resumo:
GRAIN LEGUME ROTATIONS underpin the sustainability of the Australian sugarcane farming system, offering a number of soil health and environmental benefits. Recent studies have highlighted the potential for these breaks to exacerbate nitrous oxide (N2O) emissions. An experiment was implemented in 2012 to evaluate the impact of two fallow management options (bare fallow and soybean break crop) and different soybean residue management practices on N2O emissions and sugarcane productivity. The bare fallow plots were conventionally tilled, whereas the soybean treatments were either tilled, not tilled, residue sprayed with nitrification inhibitor (DMPP) prior to tillage or had a triticale ‘catch crop’ sown between the soybean and sugarcane crops. The fallow plots received either no nitrogen (N0) or fully fertilised (N145) whereas the soybean treatments received 25 kg N/ha at planting only. The Fallow N145 treatment yielded 8% more cane than the soybean tilled treatment. However there was no statistical difference in sugar productivity. Cane yield was correlated with stalk number that was correlated to soil mineral nitrogen status in January. There was only 30% more N/ha in the above-ground biomass between the Fallow N145 and the Fallow N0 treatment; highlighting poor fertiliser nitrogen use efficiency. Supplying adequate nitrogen to meet productivity requirements without causing environmental harm remains a challenge for the Australian sugar industry. The soybean direct drill treatment significantly reduced N2O emissions and produced similar yields and profitability to the soybean tilled treatment (outlined in a companion paper by Wang et.al. in these proceedings). Furthermore, this study has highlighted that the soybean direct drill technique provides an opportunity to enable grain legume cropping in the sugarcane farming system to capture all of the soil health/environmental benefits without exacerbating N2O emissions from Australian sugarcane soils.
Resumo:
Egeria densa (PLANCH.) ST. JOHN, a submerged plant invader, forms a wide submerged plant zone, particularly along the west coast of the south basin, Lake Biwa. The macrophyte occupies over 82% of the plant zone in the basin and its biomass reaches 93% of the total. The estimated annual net production was approximately 1 kg dry wt./m2 in a dense area, which is about 4.5 times as much as the net production by phytoplankton in an offshore area of the basin. Although the area covered by the macrophyte is only 5.8% of the total of the basin, it produced about one-tenth of the total annual primary production. In the most productive season Egeria produced 46% of the total primary productivity. Thus, the macrophyte never be neglected when one considers the energy flow or material circulation in the basin. This study was initiated in order to clarify the role of submerged macrophytes, particularly E. densa, in Lake Biwa. The following points are reported in this paper: the distribution of macrophytes in the south basin; seasonal change in standing crop of E. densa; seasonal change in values related to production, utilizing a model proposed by Ikushima with its parameters experimentally determined.
Resumo:
Rockfish species are notoriously difficult to sample with multispecies bottom trawl survey methods. Typically, biomass estimates have high coefficients of variation and can fluctuate outside the bounds of biological reality from year to year. This variation may be due in part to their patchy distribution related to very specific habitat preferences. We successfully modeled the distribution of five commercially important and abundant rockf ish species. A two-stage modeling method (modeling both presence-absence and abundance) and a collection of important habitat variables were used to predict bottom trawl survey catch per unit of effort. The resulting models explained between 22% and 66% of the variation in rockfish distribution. The models were largely driven by depth, local slope, bottom temperature, abundance of coral and sponge, and measures of water column productivity (i.e., phytoplankton and zooplankton). A year-effect in the models was back-transformed and used as an index of the time series of abundance. The abundance index trajectories of three of five species were similar to the existing estimates of their biomass. In the majority of cases the habitat-based indices exhibited less interannual variability and similar precision when compared with stratified survey-based biomass estimates. These indices may provide for stock assessment models a more stable alternative to current biomass estimates produced by the multispecies bottom trawl survey in the Gulf of Alaska.
Resumo:
Using a 10-yr time-series data set, we analyzed the effects of two severe droughts on water-quality and ecosystem processes in a temperate, eutrophic estuary (Neuse River Estuary, North Carolina). During the droughts, dissolved inorganic nitrogen concentrations were on average 46–68% lower than the long-term mean due to reduced riverine input. Phytoplankton productivity and biomass were slightly below average for most of the estuary during a spring–autumn drought in 2002, but were dramatically lower than average throughout the estuary during an autumn–winter drought in 2007–2008. Droughts affected upper trophic levels through alteration of both habitat condition (i.e., bottom-water dissolved oxygen levels) and food availability. Bottomwater dissolved oxygen levels were near or slightly above average during the 2002 drought and during summer 2007. Concomitant with these modest improvements in bottom-water oxygen condition, fish kills were greatly reduced relative to the long-term average. Low-oxygen bottom-water conditions were more pronounced during summer 2008 in the latter stages of the 2007–2008 drought, and mesozooplankton abundances were eight-fold lower in summer 2008 than during nondrought years. Below-average mesozooplankton abundances persisted for well over 1 yr beyond cessation of the drought. Significant fish kills were observed in summer 2008 and 2009, perhaps due to the synergistic effects of hypoxia and reduced food availability. These results indicate that droughts can exert both ephemeral and prolonged multiyear influence on estuarine ecosystem processes and provide a glimpse into the future, when many regions of the world are predicted to face increased drought frequency and severity due to climate change.
Resumo:
Recruitment of bay anchovy (Anchoa mitchilli) in Chesapeake is related to variability in hydrological conditions and to abundance and spatial distribution of spawning stock biomass (SSB). Midwater-trawl surveys conducted for six years, over the entire 320-km length of the bay, provided information on anchovy SSB, annual spatial patterns of recruitment, and their relationships to variability in the estuarine environment. SSB of anchovy varied sixfold in 1995–2000; it alone explained little variability in young-of-the-year (YOY) recruitment level in October, which varied ninefold. Recruitments were low in 1995 and 1996 (47 and 31 Z 109) but higher in 1997–2000 (100 to 265 Z 109). During the recruitment process the YOY population migrated upbay before a subsequent fall-winter downbay migration. The extent of the downbay migration by maturing recruits was greatest in years of high freshwater input to the bay. Mean dissolved oxygen (DO) was more important than freshwater input in controlling distribution of SSB and shifts in SSB location between April– May (prespawning) and June–August (spawning) periods. Recruitments of bay anchovy were higher when mean DO was lowest in the downbay region during the spawning season. It is hypothesized that anchovy recruitment level is inversely related to mean DO concentration because low DO is associated with high plankton productivity in Chesapeake Bay. Additionally, low DO conditions may confine most bay anchovy spawners to the downbay region, where production of larvae and juveniles is enhanced. A modified Ricker stock-recruitment model indicated density-compensatory recruitment with respect to SSB and demonstrated the importance of spring-summer DO levels and spatial distribution of SSB as controllers of bay anchovy recruitment.
Resumo:
This project was done during a one-year period (2006-2007) with the aim of assessing and evaluating the susceptible and vulnerable habitat of Tajan River estuarine region as well as identifying its ecological features. This region consists of Tajan estuarine region as one of the sub-basins of the Caspian Sea basin which covers a surface of 2km2. In this assessment, 6 riverine estuarine and marine stations were chosen in which non-biotic parameters such as temperature, salinity, dissolved oxygen, pH and nutrients, and biotic parameters such as variation, density, plankton, primary production by chlorophyll-a. Benthos variation density, silt and the organic materials of the sediments were sampled and measured monthly. The amount of chlorophyll-a concentration and primary production showed a lot of seasonal changes at these stations which ranged from0.3 to 96 mg/m3. The results from the primary productions indicated that the eastern station of the estuary had high concentrations of chlorophyll-a during all seasons (96mg/m3). The most important and dominant planktonic groups in this region included Bacillariophyta from plankton and copepoda from zooplankton. The most important Benthos communities consisted of Driessena polymorpha.Cerastoderma lamarki in estuarine region,Chironomus plumosus in riverine region and Hypaniola sp. In marine region. Assessing the annual variation in these three riverine, estuarine and marine regions, phytoplankton with 3.1, Zooplankton with 2.7 and Benthos with 1.9 Showed the most density in the estuarine region. Assessing the annual density, phytoplanktonic (6118967 no . in m3) and zooplanktonic (7272 no . in m3) communities showed the most density in the marine region. Assessing the statistical tests showed that the estuarine and riverine regions had a significant difference in planktonic density (p<0.005) compared with the marine region. Moreover, The zeoplanktonic density in the marine region had a significant difference (p<0.005) with estuarine and riverine regions. Tooki test and one-way variance Analysis showed that in assessing the planktonic groups (p<0.005) and Benthos (p<0.005), there was a significant difference in variation index between river with estuary, and estuary with the sea. The amount of the total annual live biomass of the Benthos resource in Tajan river estuarine region was estimated 757.66 g/m2.
Resumo:
Reducing excessive light harvesting in photosynthetic organisms may increase biomass yields by limiting photoinhibition and increasing light penetration in dense cultures. The cyanobacterium Synechocystis sp. PCC 6803 harvests light via the phycobilisome, which consists of an allophycocyanin core and six radiating rods, each with three phycocyanin (PC) discs. Via targeted gene disruption and alterations to the promoter region, three mutants with two (pcpcT→C) and one (ΔCpcC1C2:pcpcT→C) PC discs per rod or lacking PC (olive) were generated. Photoinhibition and chlorophyll levels decreased upon phycobilisome reduction, although greater penetration of white light was observed only in the PC-deficient mutant. In all strains cultured at high cell densities, most light was absorbed by the first 2 cm of the culture. Photosynthesis and respiration rates were also reduced in the ΔCpcC1C2:pcpcT→C and olive mutants. Cell size was smaller in the pcpcT→C and olive strains. Growth and biomass accumulation were similar between the wild-type and pcpcT→C under a variety of conditions. Growth and biomass accumulation of the olive mutant were poorer in carbon-saturated cultures but improved in carbon-limited cultures at higher light intensities, as they did in the ΔCpcC1C2:pcpcT→C mutant. This study shows that one PC disc per rod is sufficient for maximal light harvesting and biomass accumulation, except under conditions of high light and carbon limitation, and two or more are sufficient for maximal oxygen evolution. To our knowledge, this study is the first to measure light penetration in bulk cultures of cyanobacteria and offers important insights into photobioreactor design.
Resumo:
Effects of solar ultraviolet radiation (UVR) on Spirulina platensis were studied by investigating its photochemical efficiency, photosynthetic pigments and biomass production while exposed to full spectrum solar radiation or depleted of UVR for understanding how and to what extent UVR influences its photosynthetic physiology and production. It was found that UVR brought about an extra inhibition of photochemical efficiency by 26%-30%. The greatest inhibition of photochemical efficiency in S. platensis was observed at noontime, and then recovered to some extent in late afternoon no matter which treatment they were exposed to. The contents of chlorophyll a, phycocyanin and carotenoids increased during initial stage of the exposure, but decreased with elongated exposure. UVR decreased the biomass yield by about 6%. It indicated that filtering out UVR of solar radiation would raise the productivity of S. platensis, which is an important factor that should be considered in the production.
Resumo:
Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (< 2 mu m), nanophytoplankton (2-20 mu m), and microphytoplankton (> 20 mu m) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13-3.43 and 0.09-1.92 d(-1) for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 mu g C 1(-1) d(-1) at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive.
Resumo:
This research was conducted on alpine meadow site at Menyuan county, Qinghai Province, People's Republic of China to determine the effects of native, subterranean rodent of Qinghai-Tibet grasslands, the plateau zokors (Myospalax baileyi), on seasonal above-and below-ground plant biomass, plant species diversity and productivity. Both total peaks of above-and below-ground biomass were the greatest (413.600 g/m~2 and 2297.502 g/m~2) in the patch no any plateau zokors colonized by plateau zokors over 10 years in August and October, respectively. Both above-and below-ground biomass were significantly increased in the patches where plateau zokors were removed or the burrow systems were abandoned for five years compared to the patches plateau zokors colonized over 10 years. However, both above-and below-ground biomass in abandoned patches were significantly lower than that in uncolonized patches. Monocotyledonous biomass was reduced greatly, but the non-palatable dicots were significantly increased in colonized patches. The palatable biomass of monocots and dicots were increased in abandoned patches. Total plant species diversity was the greatest in uncolonized patchesand least in abandoned patch. The total net primary production in colonized patches was reduced by 68.98% compared with uncolonized patches. Although the patches were without any plateau zokors disturbance for fives years, the total net primary production just reached 58.69% of the uncolonized patches. The above-ground net primary production in abandoned patches increased 28.74% and the below-ground increased 54.91% compared with the colonized patches. We suggest that plateau zokor-induced changes in plant above- and below-ground biomass and species diversity may lead to further alterations of nutrient cycling and trophic dynamics in this alpine meadow ecosystem.
Resumo:
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the importance of species composition, species richness, the type of different growth forms, and plant biomass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, herbaceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a decrease from 13196.96 +/- 719.69 g/m(2) in the sedge-dominated K. tibetica swamp to 2869.58 +/- 147.52 g/m(2) in the forb and sedge dominated K. pygmaea meadow, and to 2153.08 +/- 141.95 g/m(2) in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of belowground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P < 0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P < 0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P < 0.05); belowground biomass was positively correlated with soil moisture (P < 0.05). However, in the K. pygnaeca and K. humilis meadow communities, aboveground biomass was positively correlated to soil organic matter and soil total nitrogen (P < 0.05). This suggests that the distribution of biomass coincided with soil moisture and edaphic gradient in alpine meadows.