786 resultados para binocular vision
Resumo:
Este trabajo es una revisión de literatura que abarca una serie de artículos disponibles en la base de datos de la Universidad del Rosario, publicados entre los años 2006- 2016. En total se revisaron 52 artículos. Se presenta el concepto de sublimación según el psicoanálisis, el cual ha sido investigado en áreas como la religión, la filosofía, el arte, la cultura y en algunos casos en donde este se evidencia; finalmente se presentan conclusiones sobre dicho concepto durante últimos 10 años.
Resumo:
This report documents the design and implementation of a binocular, foveated active vision system as part of the Cog project at the MIT Artificial Intelligence Laboratory. The active vision system features a three degree of freedom mechanical platform that supports four color cameras, a motion control system, and a parallel network of digital signal processors for image processing. To demonstrate the capabilities of the system, we present results from four sample visual-motor tasks.
Resumo:
Under natural viewing conditions, a single depthful percept of the world is consciously seen. When dissimilar images are presented to corresponding regions of the two eyes, binocular rivalry may occur, during which the brain consciously perceives alternating percepts through time. Perceptual bistability can also occur in response to a single ambiguous figure. These percepts raise basic questions: What brain mechanisms generate a single depthful percept of the world? How do the same mechanisms cause perceptual bistability, notably binocular rivalry? What properties of brain representations correspond to consciously seen percepts? How do the dynamics of the layered circuits of visual cortex generate single and bistable percepts? A laminar cortical model of how cortical areas V1, V2, and V4 generate depthful percepts is developed to explain and quantitatively simulate binocular rivalry data. The model proposes how mechanisms of cortical development, perceptual grouping, and figure-ground perception lead to single and rivalrous percepts.
Resumo:
A fundamental problem for any visual system with binocular overlap is the combination of information from the two eyes. Electrophysiology shows that binocular integration of luminance contrast occurs early in visual cortex, but a specific systems architecture has not been established for human vision. Here, we address this by performing binocular summation and monocular, binocular, and dichoptic masking experiments for horizontal 1 cycle per degree test and masking gratings. These data reject three previously published proposals, each of which predict too little binocular summation and insufficient dichoptic facilitation. However, a simple development of one of the rejected models (the twin summation model) and a completely new model (the two-stage model) provide very good fits to the data. Two features common to both models are gently accelerating (almost linear) contrast transduction prior to binocular summation and suppressive ocular interactions that contribute to contrast gain control. With all model parameters fixed, both models correctly predict (1) systematic variation in psychometric slopes, (2) dichoptic contrast matching, and (3) high levels of binocular summation for various levels of binocular pedestal contrast. A review of evidence from elsewhere leads us to favor the two-stage model. © 2006 ARVO.
Resumo:
Visual mechanisms in primary visual cortex are suppressed by the superposition of gratings perpendicular to their preferred orientations. A clear picture of this process is needed to (i) inform functional architecture of image-processing models, (ii) identify the pathways available to support binocular rivalry, and (iii) generally advance our understanding of early vision. Here we use monoptic sine-wave gratings and cross-orientation masking (XOM) to reveal two cross-oriented suppressive pathways in humans, both of which occur before full binocular summation of signals. One is a within-eye (ipsiocular) pathway that is spatially broadband, immune to contrast adaptation and has a suppressive weight that tends to decrease with stimulus duration. The other pathway operates between the eyes (interocular), is spatially tuned, desensitizes with contrast adaptation and has a suppressive weight that increases with stimulus duration. When cross-oriented masks are presented to both eyes, masking is enhanced or diminished for conditions in which either ipsiocular or interocular pathways dominate masking, respectively. We propose that ipsiocular suppression precedes the influence of interocular suppression and tentatively associate the two effects with the lateral geniculate nucleus (or retina) and the visual cortex respectively. The interocular route is a good candidate for the initial pathway involved in binocular rivalry and predicts that interocular cross-orientation suppression should be found in cortical cells with predominantly ipsiocular drive. © 2007 IBRO.
Resumo:
We assessed summation of contrast across eyes and area at detection threshold ( C t). Stimuli were sine-wave gratings (2.5 c/deg) spatially modulated by cosine- and anticosine-phase raised plaids (0.5 c/deg components oriented at ±45°). When presented dichoptically the signal regions were interdigitated across eyes but produced a smooth continuous grating following their linear binocular sum. The average summation ratio ( C t1/([ C t1+2]) for this stimulus pair was 1.64 (4.3 dB). This was only slightly less than the binocular summation found for the same patch type presented to both eyes, and the area summation found for the two different patch types presented to the same eye. We considered 192 model architectures containing each of the following four elements in all possible orders: (i) linear summation or a MAX operator across eyes, (ii) linear summation or a MAX operator across area, (iii) linear or accelerating contrast transduction, and (iv) additive Gaussian, stochastic noise. Formal equivalences reduced this to 62 different models. The most successful four-element model was: linear summation across eyes followed by nonlinear contrast transduction, linear summation across area, and late noise. Model performance was enhanced when additional nonlinearities were placed before binocular summation and after area summation. The implications for models of probability summation and uncertainty are discussed.
Resumo:
Binocular combination for first-order (luminancedefined) stimuli has been widely studied, but we know rather little about this binocular process for spatial modulations of contrast (second-order stimuli). We used phase-matching and amplitude-matching tasks to assess binocular combination of second-order phase and modulation depth simultaneously. With fixed modulation in one eye, we found that binocularly perceived phase was shifted, and perceived amplitude increased almost linearly as modulation depth in the other eye increased. At larger disparities, the phase shift was larger and the amplitude change was smaller. The degree of interocular correlation of the carriers had no influence. These results can be explained by an initial extraction of the contrast envelopes before binocular combination (consistent with the lack of dependence on carrier correlation) followed by a weighted linear summation of second-order modulations in which the weights (gains) for each eye are driven by the first-order carrier contrasts as previously found for first-order binocular combination. Perceived modulation depth fell markedly with increasing phase disparity unlike previous findings that perceived first-order contrast was almost independent of phase disparity. We present a simple revision to a widely used interocular gain-control theory that unifies first- and second-order binocular summation with a single principle-contrast-weighted summation-and we further elaborate the model for first-order combination. Conclusion: Second-order combination is controlled by first-order contrast.
Resumo:
Purpose: First-eye cataract surgery can reduce the rate of falls among older adults, yet the effect of second-eye surgery on the rate of falling remains unclear. The present study investigated the effect of monocular and binocular simulated cataract blur on postural stability among older adults. Methods: Postural stability was assessed on 34 healthy older adults (mean 68.2 years, SD 3.5) with normal vision, using a portable force platform (BT4, HUR Labs, Finland) which collected data on centre of pressure (COP) displacement. Stability was assessed on firm and foam surfaces under four binocular viewing conditions using Vistech filters to simulate cataract blur: [1] best-corrected vision both eyes; [2] blur over non-dominant eye, [3] blur over dominant eye and [4] blur over both eyes. Binocular logMAR visual acuity, Pelli-Robson contrast sensitivity and stereoacuity were also measured under these viewing conditions and ocular dominance measured using the hole-in-card test. Generalized estimating equations with an exchangeable correlation structure examined the effect of the surface and vision conditions on postural stability. Results: Visual acuity and contrast sensitivity were significantly reduced under monocular and binocular cataract blur compared to normal viewing. All blur conditions resulted in loss of stereoacuity. Binocular cataract blur significantly reduced postural stability compared to normal vision on the firm (COP path length; p=0.013) and foam surface (anterior-posterior COP RMS, COP path length and COP area; p<0.01). However, no significant differences in postural stability were found between the monocular blur conditions compared to normal vision, or between the dominant and non-dominant monocular blur conditions on either the firm or foam surfaces. Conclusions: Findings indicate that binocular blur significantly impairs postural stability, and suggests that improvements in postural stability may justify first-eye cataract surgery, particularly during somatosensory disruption. Postural stability was not significantly impaired in the monocular cataract blur conditions compared to the normal vision condition, nor was there any effect of ocular dominance on postural stability in the presence of monocular cataract blur.
Resumo:
Background To determine the impact of cataract surgery on vision-related quality of life (VRQOL) and examine the association between objective visual measures and change in VRQOL after surgery among bilateral cataract patients in Ho Chi Minh City, Vietnam. Methods A cohort of older patients with bilateral cataract was assessed one week before and one to three months after first eye or both eye cataract surgery. Visual measures including visual acuity, contrast sensitivity and stereopsis were obtained. Vision-related quality of life was assessed using the NEI VFQ-25. Descriptive analyses and a generalized linear estimating equation (GEE) analysis were undertaken to measure change in VRQOL after surgery. Results Four hundred and thirteen patients were assessed before cataract surgery and 247 completed the follow-up assessment one to three months after first or both eye cataract surgery. Overall, VRQOL significantly improved after cataract surgery (p < 0.001) particularly after both eye surgeries. Binocular contrast sensitivity (p < 0.001) and stereopsis (p < 0.001) were also associated with change in VRQOL after cataract surgery. Visual acuity was not associated with VRQOL. Conclusions Cataract surgery significantly improved VRQOL among bilateral cataract patients in Vietnam. Contrast sensitivity as well as stereopsis, rather than visual acuity significantly affected VRQOL after cataract surgery.
Resumo:
This study investigated questions related to half-occlusion processing in human stereoscopic vision: (1) How does the depth location of a half-occluding figure affect the depth localization of adjacent monocular objects? (2) Is three-dimensional slant around vertical axis (geometric effect) affected by half-occlusion constraints? and (3) How the half-occlusion constraints and surface formation processes are manifested in stereoscopic capture? Our results showed that the depth localization of binocular objects affects the depth localization of discrete monocular objects. We also showed that the visual system has a preference for a frontoparallel surface interpretation if the half-occlusion configuration allows multiple interpretation alternatives. When the surface formation was constrained by textures, our results showed that a process of rematching spreading determines the resulting perception and that the spreading can be limited by illusory contours that support the presence of binocularly unmatched figures. The unmatched figures could be present, if the inducing figures producing the illusory surface contained binocular image differences that provided cues for quantitative da Vinci stereopsis. These findings provide evidence of the significant role of half-occlusions in stereoscopic processing.
Resumo:
Experiments are described using the random dot stereo patterns devised by Julesz, but substituting various colors and luminances for the usual black and white random squares. The ability to perceive the patterns in depth depends on a luminance difference between the colors used. If two colors are the same luminance, then depth is not perceived although each of the individual squares which make up the patterns is easily seen due to the color difference. This is true for any combination of different colors. If different colors are used for corresponding random squares between the left and right eye patterns, stereopsis is possible for all combinations of binocular rivalry in color, provided the luminance difference is large enough. Rivalry in luminance always precludes stereopsis, regardless of the colors involved.
Resumo:
As part of a genome-wide association study (GWAS) of perceptual traits in healthy adults, we measured stereo acuity, the duration of alternative percepts in binocular rivalry and the extent of dichoptic masking in 1060 participants. We present the distributions of the measures, the correlations between measures, and their relationships to other psychophysical traits. We report sex differences, and correlations with age, interpupillary distance, eye dominance, phorias, visual acuity and personality. The GWAS, using data from 988 participants, yielded one genetic association that passed a permutation test for significance: The variant rs1022907 in the gene VTI1A was associated with self-reported ability to see autostereograms. We list a number of other suggestive genetic associations (p<10-5).
Resumo:
Purpose: To estimate the prevalence, potential determinants, and proportion of met need for near vision impairment (NVI) correctable with refraction approximately 2 years after initial examination of a multi-country cohort. Design: Population-based, prospective cohort study. Participants: People aged ≥35 years examined at baseline in semi-rural (Shunyi) and urban (Guangzhou) sites in China; rural sites in Nepal (Kaski), India (Madurai), and Niger (Dosso); a semi-urban site (Durban) in South Africa; and an urban site (Los Angeles) in the United States. Methods: Near visual acuity (NVA) with and without current near correction was measured at 40 cm using a logarithm of the minimum angle of resolution near vision tumbling E chart. Participants with uncorrected binocular NVA ≤20/40 were tested with plus sphere lenses to obtain best-corrected binocular NVA. Main Outcome Measures: Prevalence of total NVI (defined as uncorrected NVA ≤20/40) and NVI correctable and uncorrectable to >20/40, and current spectacle wearing among those with bilateral NVA ≤20/63 improving to >20/40 with near correction (met need). Results: Among 13 671 baseline participants, 10 533 (77.2%) attended the follow-up examination. The prevalence of correctable NVI increased with age from 35 to 50-60 years and then decreased at all sites. Multiple logistic regression modeling suggested that correctable NVI was not associated with gender at any site, whereas more educated persons aged >54 years were associated with a higher prevalence of correctable NVI in Nepal and India. Although near vision spectacles were provided free at baseline, wear among those who could benefit was <40% at all but 2 centers (Guangzhou and Los Angeles). Conclusions: Prevalence of correctable NVI is greatest among persons of working age, and rates of correction are low in many settings, suggesting that strategies targeting the workplace may be needed.
Resumo:
In an immersive virtual reality environment, subjects fail to notice when a scene expands or contracts around them, despite correct and consistent information from binocular stereopsis and motion parallax, resulting in gross failures of size constancy (A. Glennerster, L. Tcheang, S. J. Gilson, A. W. Fitzgibbon, & A. J. Parker, 2006). We determined whether the integration of stereopsis/motion parallax cues with texture-based cues could be modified through feedback. Subjects compared the size of two objects, each visible when the room was of a different size. As the subject walked, the room expanded or contracted, although subjects failed to notice any change. Subjects were given feedback about the accuracy of their size judgments, where the “correct” size setting was defined either by texture-based cues or (in a separate experiment) by stereo/motion parallax cues. Because of feedback, observers were able to adjust responses such that fewer errors were made. For texture-based feedback, the pattern of responses was consistent with observers weighting texture cues more heavily. However, for stereo/motion parallax feedback, performance in many conditions became worse such that, paradoxically, biases moved away from the point reinforced by the feedback. This can be explained by assuming that subjects remap the relationship between stereo/motion parallax cues and perceived size or that they develop strategies to change their criterion for a size match on different trials. In either case, subjects appear not to have direct access to stereo/motion parallax cues.