939 resultados para binary tree
Resumo:
This paper presents a general, global approach to the problem of robot exploration, utilizing a topological data structure to guide an underlying Simultaneous Localization and Mapping (SLAM) process. A Gap Navigation Tree (GNT) is used to motivate global target selection and occluded regions of the environment (called “gaps”) are tracked probabilistically. The process of map construction and the motion of the vehicle alters both the shape and location of these regions. The use of online mapping is shown to reduce the difficulties in implementing the GNT.
Resumo:
The privacy of efficient tree-based RFID authentication protocols is heavily dependent on the branching factor on the top layer. Indefinitely increasing the branching factor, however, is not a viable option. This paper proposes the alternate-tree walking scheme as well as two protocols to circumvent this problem. The privacy of the resulting protocols is shown to be comparable to that of linear-time protocols, where there is no leakage of information, whilst reducing the computational load of the database by one-third of what is required of tree-based protocols during authentication. We also identify and address a limitation in quantifying privacy in RFID protocols.
Resumo:
This paper focuses on the turning point experiences that worked to transform the researcher during a preliminary consultation process to seek permission to conduct of a small pilot project on one Torres Strait Island. The project aimed to learn from parents how they support their children in their mathematics learning. Drawing on a community research design, a consultative meeting was held with one Torres Strait Islander community to discuss the possibility of piloting a small project that focused on working with parents and children to learn about early mathematics processes. Preliminary data indicated that parents use networks in their community. It highlighted the funds of knowledge of mathematics that exist in the community and which are used to teach their children. Such knowledges are situated within a community’s unique histories, culture and the voices of the people. “Omei” tree means the Tree of Wisdom in the Island community.
Resumo:
The Agrobacterium-mediated transformation system was extended to two indica cultivars: a widely cultivated breeding line IR-64 and an elite basmati cultivar Karnal Local. Root tips and shoot tips of seedlings, and scutellar-calli derived from mature seeds showed high-efficiency Agrobacterium tumefaciens infection and stable transformation. In addition to the superbinary vector pTOK233 in Agrobacterium strain LBA4404, almost equally high levels of transformation were achieved with a relatively much smaller (13.1 kb) binary vector (pCAMBIA1301) in a supervirulent host strain AGL1. In both cases, as well as in both cultivars, while 60–90% of the infected explants produced calli resistant to the selectable agent hygromycin, 59–75% of such calli tested positive for GUS. A high level (400 μM) of acetosyringone in the preinduction medium for Agrobacterium and a higher level (500 μM) in the cocultivation medium was necessary for an enhancement in transformation frequency of the binary vector to levels comparable to a superbinary. Hygromycin-resistant calli could be produced from all the explants used. Transformants could be regenerated for both cultivars using the superbinary and binary vector, but only for calli of scutellar origin. In addition to the molecular confirmation of hpt and gus gene transfer and transcription, absence of gene sequences outside the transferred DNA (T-DNA) region confirmed absence of any long T-DNA transfer.
Resumo:
The identification of the primary drivers of stock returns has been of great interest to both financial practitioners and academics alike for many decades. Influenced by classical financial theories such as the CAPM (Sharp, 1964; Lintner, 1965) and APT (Ross, 1976), a linear relationship is conventionally assumed between company characteristics as derived from their financial accounts and forward returns. Whilst this assumption may be a fair approximation to the underlying structural relationship, it is often adopted for the purpose of convenience. It is actually quite rare that the assumptions of distributional normality and a linear relationship are explicitly assessed in advance even though this information would help to inform the appropriate choice of modelling technique. Non-linear models have nevertheless been applied successfully to the task of stock selection in the past (Sorensen et al, 2000). However, their take-up by the investment community has been limited despite the fact that researchers in other fields have found them to be a useful way to express knowledge and aid decision-making...
Resumo:
This paper presents a combined structure for using real, complex, and binary valued vectors for semantic representation. The theory, implementation, and application of this structure are all significant. For the theory underlying quantum interaction, it is important to develop a core set of mathematical operators that describe systems of information, just as core mathematical operators in quantum mechanics are used to describe the behavior of physical systems. The system described in this paper enables us to compare more traditional quantum mechanical models (which use complex state vectors), alongside more generalized quantum models that use real and binary vectors. The implementation of such a system presents fundamental computational challenges. For large and sometimes sparse datasets, the demands on time and space are different for real, complex, and binary vectors. To accommodate these demands, the Semantic Vectors package has been carefully adapted and can now switch between different number types comparatively seamlessly. This paper describes the key abstract operations in our semantic vector models, and describes the implementations for real, complex, and binary vectors. We also discuss some of the key questions that arise in the field of quantum interaction and informatics, explaining how the wide availability of modelling options for different number fields will help to investigate some of these questions.
Resumo:
Through a forest inventory in parts of the Amudarya river delta, Central Asia, we assessed the impact of ongoing forest degradation on the emissions of greenhouse gases (GHG) from soils. Interpretation of aerial photographs from 2001, combined with data on forest inventory in 1990 and field survey in 2003 provided comprehensive information about the extent and changes of the natural tugai riparian forests and tree plantations in the delta. The findings show an average annual deforestation rate of almost 1.3% and an even higher rate of land use change from tugai forests to land with only sparse tree cover. These annual rates of deforestation and forest degradation are higher than the global annual forest loss. By 2003, the tugai forest area had drastically decreased to about 60% compared to an inventory in 1990. Significant differences in soil GHG emissions between forest and agricultural land use underscore the impact of the ongoing land use change on the emission of soil-borne GHGs. The conversion of tugai forests into irrigated croplands will release 2.5 t CO2 equivalents per hectare per year due to elevated emissions of N2O and CH4. This demonstrates that the ongoing transformation of tugai forests into agricultural land-use systems did not only lead to a loss of biodiversity and of a unique ecosystem, but substantially impacts the biosphere-atmosphere exchange of GHG and soil C and N turnover processes.
Resumo:
An optical system which performs the multiplication of binary numbers is described and proof-of-principle experiments are performed. The simultaneous generation of all partial products, optical regrouping of bit products, and optical carry look-ahead addition are novel features of the proposed scheme which takes advantage of the parallel operations capability of optical computers. The proposed processor uses liquid crystal light valves (LCLVs). By space-sharing the LCLVs one such system could function as an array of multipliers. Together with the optical carry look-ahead adders described, this would constitute an optical matrix-vector multiplier.
Resumo:
Efficient and effective feature detection and representation is an important consideration when processing videos, and a large number of applications such as motion analysis, 3D scene understanding, tracking etc. depend on this. Amongst several feature description methods, local features are becoming increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational complexity, their performance is still too limited for real world applications. Furthermore, rapid increases in the uptake of mobile devices has increased the demand for algorithms that can run with reduced memory and computational requirements. In this paper we propose a semi binary based feature detectordescriptor based on the BRISK detector, which can detect and represent videos with significantly reduced computational requirements, while achieving comparable performance to the state of the art spatio-temporal feature descriptors. First, the BRISK feature detector is applied on a frame by frame basis to detect interest points, then the detected key points are compared against consecutive frames for significant motion. Key points with significant motion are encoded with the BRISK descriptor in the spatial domain and Motion Boundary Histogram in the temporal domain. This descriptor is not only lightweight but also has lower memory requirements because of the binary nature of the BRISK descriptor, allowing the possibility of applications using hand held devices.We evaluate the combination of detectordescriptor performance in the context of action classification with a standard, popular bag-of-features with SVM framework. Experiments are carried out on two popular datasets with varying complexity and we demonstrate comparable performance with other descriptors with reduced computational complexity.
Resumo:
Many alternative therapies are used as first aid treatment for burns, despite limited evidence supporting their use. In this study, Aloe vera, saliva and a tea tree oil impregnated dressing (Burnaid) were applied as first aid to a porcine deep dermal contact burn, compared to a control of nothing. After burn creation, the treatments were applied for 20 min and the wounds observed at weekly dressing changes for 6 weeks. Results showed that the alternative treatments did significantly decrease subdermal temperature within the skin during the treatment period. However, they did not decrease the microflora or improve re-epithelialisation, scar strength, scar depth or cosmetic appearance of the scar and cannot be recommended for the first aid treatment of partial thickness burns.
Resumo:
Genomic sequences are fundamentally text documents, admitting various representations according to need and tokenization. Gene expression depends crucially on binding of enzymes to the DNA sequence at small, poorly conserved binding sites, limiting the utility of standard pattern search. However, one may exploit the regular syntactic structure of the enzyme's component proteins and the corresponding binding sites, framing the problem as one of detecting grammatically correct genomic phrases. In this paper we propose new kernels based on weighted tree structures, traversing the paths within them to capture the features which underpin the task. Experimentally, we and that these kernels provide performance comparable with state of the art approaches for this problem, while offering significant computational advantages over earlier methods. The methods proposed may be applied to a broad range of sequence or tree-structured data in molecular biology and other domains.
Resumo:
In this paper, we propose a steganalysis method that is able to identify the locations of stego bearing pixels in the binary image. In order to do that, our proposed method will calculate the residual between a given stego image and its estimated cover image. After that, we will compute the local entropy difference between these two versions of images as well. Finally, we will compute the mean of residual and mean of local entropy difference across multiple stego images. From these two means, the locations of stego bearing pixels can be identified. The presented empirical results demonstrate that our proposed method can identify the stego bearing locations of near perfect accuracy when sufficient stego images are supplied. Hence, our proposed method can be used to reveal which pixels in the binary image have been used to carry the secret message.
Resumo:
In this paper, we propose a new multi-class steganalysis for binary image. The proposed method can identify the type of steganographic technique used by examining on the given binary image. In addition, our proposed method is also capable of differentiating an image with hidden message from the one without hidden message. In order to do that, we will extract some features from the binary image. The feature extraction method used is a combination of the method extended from our previous work and some new methods proposed in this paper. Based on the extracted feature sets, we construct our multi-class steganalysis from the SVM classifier. We also present the empirical works to demonstrate that the proposed method can effectively identify five different types of steganography.