967 resultados para beta-amyloid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the use of molecular combing as an alignment method to obtain macroscopically oriented amyloid fibrils on planar surfaces. The aligned fibrils are studied by polarized infrared spectroscopy. This gives structural information that cannot be definitively obtained from standard infrared experiments on isotropic samples, for example, confirmation of the characteristic cross-beta amyloid core structure, the side-chain orientation from specific amino acids, and the arrangement of the strands within the fibrils, as we demonstrate here. We employed amyloid fibrils from hen egg white lysozyme (HEWL) and from a model octapeptide. Our results demonstrate molecular combing as a straightforward method to align amyloid fibrils, producing highly anisotropic infrared linear dichroism (IRLD) spectra.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ZUSAMMENFASSUNGIn den Gehirnen von Alzheimer-Patienten werden beta-Amyloid-Plaques gefunden, deren Hauptbestandteile die neurotoxischen beta-Amyloid-Peptide (A-beta) sind. Im Verlauf des nicht-amyloidogenen Wegs wird das Amyloid-Vorläuferproteins (APP) innerhalb der A-beta-Sequenz durch die alpha-Sekretase prozessiert, wobei das neuroprotektive APPs-alpha freigesetzt und die Entstehung der A-beta-Peptide verhindert wird. Die Aktivitätserhöhung der alpha-Sekretase ADAM10 könnte eine übermäßige Produktion der A-beta-Peptide abwenden.Zum Auffinden ADAM10-stimulierender Substanzen konnte ein Testsystem entwickelt werden, das auf der Fusion der 119 C-terminalen Aminosäurereste des Amyloid-Vorläuferproteins mit einem Reporterprotein beruht. Durch seine alkalische Phosphataseaktivität kann dieses Reporterprotein stellvertretend für das freigesetzte endogene APPs-alpha photometrisch im Zellkulturüberstand quantifiziert werden. Substanzen, die aktivierend auf die alpha-Sekretase ADAM10 wirken, können somit schnell und mit einer hohen Empfindlichkeit ermittelt werden.Die alpha-Sekretasen ADAM10 und TACE werden als inaktive Zymogene synthetisiert und besitzen eine Proprotein-Konvertasen-Erkennungssequenz zwischen der Prodomäne und der Metalloproteinase-Domäne. In dieser Arbeit konnte nachgewiesen werden, dass Proprotein-Konvertasen an der Prozessierung beider Zymogene beteiligt sind. ADAM10 und TACE wurden durch die Überexpression der Proprotein-Konvertasen PC7 und Furin in HEK293-Zellen in größerem Umfang prozessiert. Dies resultierte in einer erhöhten katalytischen Aktivität. Mutiertes ADAM10 ohne Proprotein-Konvertasen-Spaltstelle konnte nicht mehr in die katalytisch aktive Form überführt werden. Diese Ergebnisse eröffnen neue Ansätze zur Stimulierung des nicht-amyloidogenen Wegs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cleavage of the beta-amyloid precursor protein (APP) by the aspartyl protease beta-site APP-cleaving enzyme (BACE) is the first step in the generation of the amyloid beta-peptide, which is deposited in the brain of Alzheimer's disease patients. Whereas the subsequent cleavage by gamma-secretase was shown to originate from the cooperation of a multicomponent complex, it is currently unknown whether in a cellular environment BACE is enzymatically active as a monomer or in concert with other proteins. Using blue native gel electrophoresis we found that endogenous and overexpressed BACE has a molecular mass of 140 kDa instead of the expected mass of 70 kDa under denaturing conditions. This suggests that under native conditions BACE exists as a homodimer. Homodimerization was confirmed by co-immunoprecipitation of full-length BACE carrying different epitope tags. In contrast, the soluble active BACE ectodomain was exclusively present as a monomer both under native and denaturing conditions. A domain analysis revealed that the BACE ectodomain dimerized as long as it was attached to the membrane, whereas the cytoplasmic domain and the transmembrane domain were dispensable for dimerization. By adding a KKXX-endoplasmic reticulum retention signal to BACE, we demonstrate that dimerization of BACE occurs already before full maturation and pro-peptide cleavage. Furthermore, kinetic analysis of the purified native BACE dimer revealed a higher affinity and turnover rate in comparison to the monomeric soluble BACE. Dimerization of BACE might, thus, facilitate binding and cleavage of physiological substrates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

beta-Amyloid deposition and neurofibrillary tangle formation are two histopathological features of Alzheimer disease. We have previously reported that beta-amyloid immunoreactive deposits form in the brains of transgenic mice programmed for neuronal expression of the 751-amino acid isoform of human beta-amyloid precursor protein (beta-APP751) and now describe that these animals also display Alz50 intraneuronal immunoreactivity similar to that seen in early Alzheimer disease. This suggests that abnormal beta-APP expression and/or beta-amyloid deposition promotes pathogenic alterations in tau protein. The frequency of both beta-amyloid deposition and Alz50-positive neurons was twice as prevalent in brains from old (22 months) as compared to young (2-3 months) beta-APP751 transgenic mice. This increase in histopathology with age in beta-APP751 transgenic mice parallels the time-dependent progression seen in the human disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective is to study beta-amyloid (Abeta) deposition in dementia with Lewy bodies (DLB) with Alzheimer's disease (AD) pathology (DLB/AD). The size frequency distributions of the Abeta deposits were studied and fitted by log-normal and power-law models. Patients were ten clinically and pathologically diagnosed DLB/AD cases. Size distributions had a single peak and were positively skewed and similar to those described in AD and Down's syndrome. Size distributions had smaller means in DLB/AD than in AD. Log-normal and power-law models were fitted to the size distributions of the classic and diffuse deposits, respectively. Size distributions of Abeta deposits were similar in DLB/AD and AD. Size distributions of the diffuse deposits were fitted by a power-law model suggesting that aggregation/disaggregation of Abeta was the predominant factor, whereas the classic deposits were fitted by a log-normal distribution suggesting that surface diffusion was important in the pathogenesis of the classic deposits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The cerebrospinal fluid (CSF) biomarkers amyloid beta (A beta)-42, total-tau (T-tau), and phosphorylated-tau (P-tau) demonstrate good diagnostic accuracy for Alzheimer`s disease (AD). However, there are large variations in biomarker measurements between studies, and between and within laboratories. The Alzheimer`s Association has initiated a global quality control program to estimate and monitor variability of measurements, quantify batch-to-batch assay variations, and identify sources of variability. In this article, we present the results from the first two rounds of the program. Methods: The program is open for laboratories using commercially available kits for A beta, T-tau, or P-tau. CSF samples (aliquots of pooled CSF) are sent for analysis several times a year from the Clinical Neurochemistry Laboratory at the Molndal campus of the University of Gothenburg, Sweden. Each round consists of three quality control samples. Results: Forty laboratories participated. Twenty-six used INNOTEST enzyme-linked immunosorbent assay kits, 14 used Luminex xMAP with the INNO-BIA AlzBio3 kit (both measure A beta-(1-42), P-tau(181P), and T-tau), and 5 used Mesa Scale Discovery with the A beta triplex (A beta N-42, A beta N-40, and A beta N-38) or T-tau kits. The total coefficients of variation between the laboratories were 13% to 36%. Five laboratories analyzed the samples six times on different occasions. Within-laboratory precisions differed considerably between biomarkers within individual laboratories. Conclusions: Measurements of CSF AD biomarkers show large between-laboratory variability, likely caused by factors related to analytical procedures and the analytical kits. Standardization of laboratory procedures and efforts by kit vendors to increase kit performance might lower variability, and will likely increase the usefulness of CSF AD biomarkers. (C) 2011 The Alzheimer`s Association. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim of the present study was to investigate the neuroprotective effect of dental pulp cells (DPCs) in in vitro models of Alzheimer and Parkinson disease. Primary cultures of hippocampal and ventral mesencephalic neurons were treated for 24 h with amyloid beta (A beta(1-42)) peptide 1-42 and 6-OHDA, respectively. DPCs isolated from adult rat incisors were previously cultured in tissue culture inserts and added to the neuron cultures 2 days prior to neurotoxin treatment. Cell viability was assessed by the MTT assay. The co-culture with DPCs significantly attenuated 6-OHDA and A beta(1-42)-induced toxicity in primary cultures of mesencephalic and hippocampal neurons, and lead to an increase in neuronal viability in untreated cultures, suggesting a neurotrophic effect in both models. Furthermore, human dental pulp cells expressed a neuronal phenotype and produced the neurotrophic factors NGF, GDNF, BDNF, and BMP2 shown by microarray screening and antibody staining for the representative proteins. DPCs protected primary neurons in in vitro models of Alzheimer`s and Parkinson`s disease and can be viewed as possible candidates for studies on cell-based therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUMO: A doença de Alzheimer (AD) é a forma mais comum de demência em todo o mundo e sua prevalência deverá duplicar até 2050. Os mecanismos precisos responsáveis pela AD são desconhecidas mas as características histopatológicas estão bem caracterizadas. A hipótese mais importante para a perda neuronal e declínio cognitivo na AD é a cascata amilóide que indica que AD é o resultado da sobreprodução de beta amilóide (Aβ) e / ou remoção ineficaz; a acumulação do BA no cérebro seria o passo crítico na patogénese da AD. Actualmente, a identificação de proteínas que se ligam ao Aβ e modulam a sua agregação e neurotoxicidade pode proporcionar a base para novas abordagens terapêuticas. A apolipoproteína AI (ApoA-I), o principal componente das HDL humanas, interage com o domínio extracelular da proteína precursora de amilóide (APP), bem como com o Aβ. Estudos epidemiológicos têm mostrado uma diminuição acentuada da ApoA-I plasmática em doentes com AD, com uma correlação inversa entre o nível de ApoA-I e o risco de AD. Este trabalho pretende apresentar um projecto que tem como objectivo investigar se os anticorpos anti-apo AI podem impedir a formação de complexos Aβ / ApoA-I, bloqueando o efeito protector da ApoA-I. A hipótese baseia-se na possibilidade dos doentes com AD terem anticorpos anti-ApoA-I plasmáticos e de estes poderem interferir com a formação do complexo no LCR.------- ABSTRACT:Alzheimer’s disease (AD) is the most common form of dementia world-wide and its prevalence is expected to double by the year 2050. The precise mechanisms responsible for AD are unknown but the histopathologic features are well-characterised. The most compelling hypothesis for neuronal loss and cognitive decline in AD is the amyloid cascade hypothesis which states that AD is the result of amyloid beta (Aβ) overproduction and/or ineffective clearance and its accumulation in the brain would be the critical step in AD pathogenesis. Currently, identification of proteins that bind Aβ and modulate its aggregation and neurotoxicity could provide the basis for novel treatment approaches. Apolipoprotein A-I (ApoA-I), the main constituent of human HDL, ApoA-I interacts with the extracellular domain of amyloid precursor protein (APP), as well as with Aβ itself. Epidemiological studies have shown a marked decrease of plasma ApoA-I levels in AD patients, with an inverse correlation between the ApoA-I level and the risk of AD. This work intends to present a project that aims to investigate if anti-ApoA-I antibodies may prevent the formation of the Aβ /ApoA-I complex and by doing so blocking the protective effect of ApoA-I in AD. We base the hypothesis on the possibility that patients with AD might have anti-ApoA-I antibodies in plasma and that these can interfere with the complex formation in the cerebrospinal fluid (CSF).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aimed to contribute to drug discovery and development (DDD) for tauopathies, while expanding our knowledge on this group of neurodegenerative disorders, including Alzheimer’s disease (AD). Using yeast, a recognized model for neurodegeneration studies, useful models were produced for the study of tau interaction with beta-amyloid (Aβ), both AD hallmark proteins. The characterization of these models suggests that these proteins co-localize and that Aβ1-42, which is toxic to yeast, is involved in tau40 phosphorylation (Ser396/404) via the GSK-3β yeast orthologue, whereas tau seems to facilitate Aβ1-42 oligomerization. The mapping of tau’s interactome in yeast, achieved with a tau toxicity enhancer screen using the yeast deletion collection, provided a novel framework, composed of 31 genes, to identify new mechanisms associated with tau pathology, as well as to identify new drug targets or biomarkers. This genomic screen also allowed to select the yeast strain mir1Δ-tau40 for development of a new GPSD2TM drug discovery screening system. A library of unique 138 marine bacteria extracts, obtained from the Mid-Atlantic Ridge hydrothermal vents, was screened with mir1Δ-tau40. Three extracts were identified as suppressors of tau toxicity and constitute good starting points for DDD programs. mir1Δ strain was sensitive to tau toxicity, relating tau pathology with mitochondrial function. SLC25A3, the human homologue of MIR1, codes for the mitochondrial phosphate carrier protein (PiC). Resorting to iRNA, SLC25A3 expression was silenced in human neuroglioma cells, as a first step towards the engineering of a neural model for replicating the results obtained in yeast. This model is essential to understand the mechanisms of tau toxicity at the mitochondrial level and to validate PiC as a relevant drug target. The set of DDD tools here presented will foster the development of innovative and efficacious therapies, urgently needed to cope with tau-related disorders of high human and social-economic impact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The incidence of neurodegenerative disease like Parkinson's disease and Alzheimer's disease (AD) increases dramatically with age; only a small percentage is directly related to familial forms. The etiology of the most abundant, sporadic forms is complex and multifactorial, involving both genetic and environmental factors. Several environmental pollutants have been associated with neurodegenerative disorders. The present article focuses on results obtained in experimental neurotoxicology studies that indicate a potential pathogenic role of lead and mercury in the development of neurodegenerative diseases. Both heavy metals have been shown to interfere with a multitude of intracellular targets, thereby contributing to several pathogenic processes typical of neurodegenerative disorders, including mitochondrial dysfunction, oxidative stress, deregulation of protein turnover, and brain inflammation. Exposure to heavy metals early in development can precondition the brain for developing a neurodegenerative disease later in life. Alternatively, heavy metals can exert their adverse effects through acute neurotoxicity or through slow accumulation during prolonged periods of life. The pro-oxidant effects of heavy metals can exacerbate the age-related increase in oxidative stress that is related to the decline of the antioxidant defense systems. Brain inflammatory reactions also generate oxidative stress. Chronic inflammation can contribute to the formation of the senile plaques that are typical for AD. In accord with this view, nonsteroidal anti-inflammatory drugs and antioxidants suppress early pathogenic processes leading to Alzheimer's disease, thus decreasing the risk of developing the disease. The effects of lead and mercury were also tested in aggregating brain-cell cultures of fetal rat telencephalon, a three-dimensional brain-cell culture system. The continuous application for 10 to 50 days of non-cytotoxic concentrations of heavy metals resulted in their accumulation in brain cells and the occurrence of delayed toxic effects. When applied at non-toxic concentrations, methylmercury, the most common environmental form of mercury, becomes neurotoxic under pro-oxidant conditions. Furthermore, lead and mercury induce glial cell reactivity, a hallmark of brain inflammation. Both mercury and lead increase the expression of the amyloid precursor protein; mercury also stimulates the formation of insoluble beta-amyloid, which plays a crucial role in the pathogenesis of AD and causes oxidative stress and neurotoxicity in vitro. Taken together, a considerable body of evidence suggests that the heavy metals lead and mercury contribute to the etiology of neurodegenerative diseases and emphasizes the importance of taking preventive measures in this regard.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background :¦In addition to opportunistic infections of the central nervous system (CNS), which are due to immunosuppression related to HIV, the latter virus, itself, can cause neuropathological abnormalities which are located mainly in the basal ganglia and are characterized by microglial giant cells, reactive astrocytosis and perivascular monocytes. This HIV encephalopathy is characterized, clinically, by psycho-motor slowing, memory loss, difficulties in complex tasks requiring executive functions, as well as motor disorders .These cognitive deficits are grouped under the acronym of HIV-associated neurocognitive disorders (HAND). In fact, HANDs are subdivided in three groups in accordance with the severity of the cognitive impairment: Asymptomatic Neurocognitive Impairment (ANI), Mild/moderate Neurocognitive Disorders (MND) and HIV Associated Dementia (HAD).¦While the incidence of HAD has significantly decreased in the era of combined antiretrobiral therapy (cART), the prevalence of milder forms of HIV-associated neurocognitive disorders HAND seem to have increased. There are many potential reasons to explain this state of facts.¦An important question is to understand how soon the brain may be affected by HIV. Since performing a biopsy in these patients is not an issue, the study of the CSF represents the best available way to look at putative biomarkers of inflammation/neurodegeneration in the CNS. Here, we wanted to examined the putative usefulness of different biomarkers as early indicators of anti-retroviral failure at the level of the CNS. We chose to study the CSF levels of:¦Amyloid-β 1-42 (Aβ42), Tau total (tTau), phosphorylated Tau (pTau), Neopterin and S100-β.¦Indeed, these molecules are representative biomarkers of the major cells of the CNS, i.e. neurons,¦macrophages/microglia and astrocytes.¦To examine how sensitive were these CSF biomarkers to indicate CNS insults caused by HIV, we proposed to take advantage of the MOST (Monotherapy Switzerland/Thailand study) study, recently published in AIDS. Thus, we collaborated with Prof. Pietro Vernazza in St-Gall. In MOST study, monotherapy (MT) consisting in ritonavir-boosted lopinavir (LPV/r) was compared to continuous conventional antiretroviral therapy including several molecules, hereafter referred as CT¦Methods :We tested 61 cerebrospinal fluid (CSF) samples from 52 patients enrolled in MOST, including 34 CSF samples of CT and 27 of MT (mean duration on MT: 47+20 weeks) in patients who maintained full VL suppression in blood (<50cps/ml). Using enzyme-linked immunosorbent assay (ELISA), we determined the CSF concentration of S100-beta (astrocytosis), neopterin (microglia, inflammation), total Tau (tTau), phosphorylated Tau (pTau), and amyloid-beta 1-42 (Abeta), the latter three markers indicating neuronal damages. The CSF samples of 37 HIV-negative patients with Alzheimer dementia (AD) served as controls. Results are expressed in pg/ml and reported as median ± interquartile range. Mann Whitney-U test was used to compare the results of a given biomarker between two groups and the Fisher test to compare frequencies.¦Results: We found a higher concentration of S100-beta (570±1132) and neopterin (2.5±2.9) in the CSF of MT versus CT (0±532, p=0.002 and 1.2±2.5, p=0.058, respectively). A cutoff of 940 pg/ml for S100-beta allowed to discriminate MT (11 above versus 16 below) from CT (1 vs 33, p=0.0003). At a lesser extent, a cutoff of 11 pg/ml for neopterin separated MT (4 above versus 23) from CT (0 vs 34, p=0.034) (Figure).¦In AD, tTau was higher (270±414) and Abeta lower (234±328) than in CT (150±153, p=0.0078, and 466±489, p=0.007, respectively). Such as for CT, Abeta was lower in AD than in MT (390±412, p=0.01). However, contrasting with CT, the levels of tTau were not different between AD and MT (199±177, p=0.11). S100b (173±214; p=0.0006) and neopterin (1.1±0.9; p=0.0014) were lower in AD than MT.¦Conclusions: Despite full VL-suppression in blood, HIV monotherapy is sufficient to trigger inflammation and, especially, astrocytosis. CSF markers of patients on CT have the same profile as reported for healthy subjects, suggesting that CT permits a good control of HIV in the brain. Finally, the levels of tTau, which are relatively similar between AD and MT patients, suggest that neurons are damaged during monotherapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we quantitatively investigated the expression of beta-site amyloid precursor protein cleaving enzyme (BACE) in the entorhinohippocampal and frontal cortex of Alzheimer's disease (AD) and old control subjects. The semiquantitative estimation indicated that the intensity of BACE overall immunoreactivity did not differ significantly between AD and controls, but that a significantly stronger staining was observed in the hippocampal regions CA3-4 compared to other regions in both AD patients and controls. The quantitative estimation confirmed that the number of BACE-positive neuronal profiles was not significantly decreased in AD. However, some degeneration of BACE-positive profiles was attested by the colocalization of neurons expressing BACE and exhibiting neurofibrillary tangles (NFT), as well as by a decrease in the surface area of BACE-positive profiles. In addition, BACE immunocytochemical expression was observed in and around senile plaques (SP), as well as in reactive astrocytes. BACE-immunoreactive astrocytes were localized in the vicinity or close to the plaques and their number was significantly increased in AD entorhinal cortex. The higher amount of beta-amyloid SP and NFT in AD was not correlated with an increase in BACE immunoreactivity. Taken together, these data accent that AD progression does not require an increased neuronal BACE protein level, but suggest an active role of BACE in immunoreactive astrocytes. Moreover, the strong expression in controls and regions less vulnerable to AD puts forward the probable existence of alternate BACE functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Alzheimer disease (AD) the involvement of entorhinal cortex, hippocampus, and associative cortical areas is well established. Regarding the involvement of the primary motor cortex the reported data are contradictory. In order to determine whether the primary motor cortex is involved in AD, the brains of 29 autopsy cases were studied, including, 17 cases with severe cortical AD-type changes with definite diagnoses of AD, 7 age-matched cases with discrete to moderate cortical AD-type changes, and 5 control cases without any AD-type cortical changes. Morphometric analysis of the cortical surface occupied by senile plaques (SPs) on beta-amyloid-immunostained sections and quantitative analysis of neurofibrillary tangles (NFTs) on Gallyas-stained sections was performed in 5 different cortical areas including the primary motor cortex. The percentage of cortical surface occupied by SPs was similar in all cortical areas, without significant difference and corresponded to 16.7% in entorhinal cortex, 21.3% in frontal associative, 16% in parietal associative, and 15.8% in primary motor cortex. The number of NFTs in the entorhinal cortex was significantly higher (41 per 0.4 mm2), compared with those in other cortical areas (20.5 in frontal, 17.9 in parietal and 11.5 in the primary motor cortex). Our findings indicate that the primary motor cortex is significantly involved in AD and suggest the appearance of motor dysfunction in late and terminal stages of the disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to understand relationships between executive and structural deficits in the frontal cortex of patients within normal aging or Alzheimer's disease, we studied frontal pathological changes in young and old controls compared to cases with sporadic (AD) or familial Alzheimer's disease (FAD). We performed a semi-automatic computer assisted analysis of the distribution of beta-amyloid (Abeta) deposits revealed by Abeta immunostaining as well as of neurofibrillary tangles (NFT) revealed by Gallyas silver staining in Brodman areas 10 (frontal polar), 12 (ventro-infero-median) and 24 (anterior cingular), using tissue samples from 5 FAD, 6 sporadic AD and 10 control brains. We also performed densitometric measurements of glial fibrillary acidic protein, principal compound of intermediate filaments of astrocytes, and of phosphorylated neurofilament H and M epitopes in areas 10 and 24. All regions studied seem almost completely spared in normal old controls, with only the oldest ones exhibiting a weak percentage of beta-amyloid deposit and hardly any NFT. On the contrary, all AD and FAD cases were severely damaged as shown by statistically significant increased percentages of beta-amyloid deposit, as well as by a high number of NFT. FAD cases (all from the same family) had statistically more beta-amyloid and GFAP than sporadic AD cases in both areas 10 and 24 and statistically more NFT only in area 24. The correlation between the percentage of beta-amyloid and the number of NFT was significant only for area 24. Altogether, these data suggest that the frontal cortex can be spared by AD type lesions in normal aging, but is severely damaged in sporadic and still more in familial Alzheimer's disease. The frontal regions appear to be differentially vulnerable, with area 12 having the less amyloid burden, area 24 the less NFT and area 10 having both more amyloid and more NFT. This pattern of damage in frontal regions may represent a strong neuroanatomical support for the deterioration of attention and cognitive capacities as well as for the presence of emotional and behavioral troubles in AD patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The filamentous brain lesions that define Alzheimer disease (AD) consist of senile plaques and neurofibrillary tangles. Undulated pathological filaments--curly fibers or neuropil threads--also occur in the neuropil. Beta-amyloid precursor proteins are synthesized by many cells outside the central nervous system and recently, deposition of beta-amyloid-protein was reported to occur in non-neuronal tissues. In addition, increasing data claim the importance of chronic inflammation in the pathogenesis of AD. These observations suggest that AD may be a widespread systemic disorder. Here we report that pathological argyrophilic filaments with histochemical properties of amyloid showing striking morphological similarity to curly fibers and/or tangles accumulate not only in ependymal layer and in epithelial cells of choroid plexus, but also in several other organs (e.g. liver, pancreas, ovary, testis, thyroid) in AD. The ependyma, choroid plexus, and various organs of 39 autopsy cases were analyzed. In search of curly fiber and tangle-like changes in organs other than brain, 395 blocks from 21 different tissues of 24 AD cases, 5 cases with discrete or moderate AD-type changes, and 10 control cases were investigated. We found in non-neuronal cells "curly fibers" or "tangles" immunoreactive with antibodies to P component, Tau-protein, ubiquitin, fibronectin, and Apolipoprotein-E, but lacking immunoreactivity with antibodies to neurofilament proteins. Ultrastructurally they consist of densely packed straight and paired helical filaments and closely resemble neurofibrillary tangles and neuropil threads. These observations indicate that the formation of "curly fibers" and "tangles" is not unique to the central nervous system. The results suggest that AD might be a systemic disorder or that similar fibrillary changes to tangles and curly fibers may also be associated with other amyloidosis than beta-amyloidosis. Further investigations are necessary to understand the pathogenetic interest of these fibrillary changes outside the CNS.