986 resultados para basement membrane


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eighteen breast cancer cell lines were examined for expression of markers of epithelial and fibroblastic differentiation: E-cadherin, desmoplakins, ZO- 1, vimentin, keratin and β1 and β4 integrins. The cell lines were distributed along a spectrum of differentiation from epithelial to fibroblastic phenotypes. The most well-differentiated, epithelioid cell lines contained proteins characteristic of desmosomal, adherens and tight junctions, were adherent to one another on plastic and in the basement membrane matrix Matrigel and were keratin-positive and vimentin-negative. These cell lines were all weakly invasive in an in vitro chemoinvasion assay. The most poorly-differentiated, fibroblastic cell lines were E-cadherin-, desmoplakin- and ZO-1-negative and formed branching structures in Matrigel. They were vimentin-positive, contained only low levels of keratins and were highly invasive in the in vitro chemoinvasion assay. Of all of the markers analyzed, vimentin expression correlated best with in vitro invasive ability and fibroblastic differentiation. In a cell line with unstable expression of vimentin, T47D(CO), the cells that were invasive were of the fibroblastic type. The differentiation markers described here may be useful for analysis of clinical specimens and could potentially provide a more precise measure of differentiation grade yielding more power for predicting prognosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the Mr. 72,000 type IV collagenase (matrix metalloproteinase 2) has been implicated in a variety of normal and pathogenic processes, its activation mechanism in vivo is unclear. We have found that fibroblasts from normal and neoplastic human breast, as well as the sarcomatous human Hs578T and HT1080 cell lines, activate endogenous matrix metalloprotease 2 when cultured on type I collagen gels, but not on plastic, fibronectin, collagen IV, gelatin, matrigel, or basement membrane-like HR9 cell matrix. This activation is monitored by the zymographic detection of Mr 59,000 and/or Mr 62,000 species, requires 2-3 days of culture on vitrogen to manifest, is cycloheximide inhibitable, and correlates with an arborized morphology. A similar activation pattern was seen in these cells in response to Concanavalin A but not transforming growth factor β or 12-O-tetradecanoylphorbol-13-acetate. The interstitial matrix may thus play an important role in regulating matrix degradation in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estrogen is known to stimulate the proliferation and basement membrane invasiveness of the MCF-7 human breast cancer cell line. We have compared the new steroidal antiestrogen ICI 164,384, the triphenylethylene 4-hydroxytamoxifen (OHT), and the benzothiophene LY 117018, for their effects on the proliferation and invasiveness of the MCF-7 cell line and its antiestrogen-resistant variant LY-2. While all three antiestrogens blocked the proliferative effects of 17β-estradiol on MCF-7 cells, OHT and LY 117018, but not ICI 164,384 stimulated their proliferation in the absence of estrogen. The proliferative effects of OHT and LY 117018 were blocked by ICI 164,384. Basement membrane invasiveness of MCF-7 cells was stimulated by 17β-estradiol and OHT, but not LY 117018 or ICI 164,384. Both ICI 164,384 and Ly 117018 were able to block the invasiveness induced by either 17β-estradiol or OHT. The LY-2 antiestrogen-resistant variant of the MCF-7 cell line showed increased basal proliferation, and responded only slightly to estrogen. ICI 164,384, but not OHT or LY 117018 antagonized the effects of 17β-estradiol, but did not reduce proliferation below control levels. The LY-2 line was not resistant to the antiestrogenic effects of LY 117018 or ICI 164,384 on invasiveness, and was stimulated by LY 117018 for this parameter. Thus, ICI 164,384 is a pure antiestrogen for MCF-7 cell proliferation and invasiveness, and may offer clinical advantage over nonsteroidal antiestrogens which can stimulate these activities in tumor models in vitro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kaposi's sarcoma (KS) in general, and acquired immunodeficiency syndrome-related KS (AIDS-KS) in particular, is a highly invasive and intensely angiogenic neoplasm of unknown cellular origin. We have recently established AIDS-KS cells in long term culture and reported the development of KS-like lesions in nude mice inoculated with these cells. Here, we have examined the in vitro invasiveness of basement membrane by AIDS-KS cells, as well as the effect(s) of their supernatants on the migration and invasiveness of human vascular endothelial cells. AIDS-KS cells were highly invasive in the Boyden chamber invasion assay and formed invasive, branching colonies in a 3-dimensional gel (Matrigel). Normal endothelial cells form tube-like structures on Matrigel. AIDS-KS cell-conditioned media induced endothelial cells to form invasive clusters in addition to tubes. KS-cell-conditioned media, when placed in the lower compartment of the Boyden chamber, stimulated the migration of human and bovine vascular endothelial cells across filters coated with either small amounts of collagen IV (chemotaxis) or a Matrigel barrier (invasion). Basic fibroblast growth factor could also induce endothelial cell chemotaxis and invasion in these assays. However, when antibodies to basic fibroblast growth factor were used the invasive activity induced by the AIDS-KS-cell-conditioned media was only marginally inhibited, suggesting that the large quantities of basic fibroblast growth factor-like material released by the AIDS-KS cells are not the main mediators of this effect. Specific inhibitors of laminin and collagenase IV action, which represent critical determinants of basement membrane invasion, blocked the invasiveness of the AIDS-KS cell-activated endothelial cells in these assays. These data indicate that KS cells appear to be of smooth muscle origin but secrete a potent inducer of endothelial cell chemotaxis and invasiveness which could be responsible for angiogenesis and the resulting highly vascularized lesions. These assays appear to be a model to study the invasive spread and angiogenic capacity of human AIDS-related KS and should prove useful in the identification of molecular mediators and potential inhibitors of neoplastic neovascularization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estrogen increases the ability of the estrogen-dependent MCF-7 human breast cancer cell line to both proliferate and invade through an artificial basement membrane. In studying the response of MCF-7 cells to various antiestrogens, we found that 4-hydroxytamoxifen and tamoxifen inhibited cell proliferation but increased their invasiveness. In contrast, the structurally unrelated benzothiophene antiestrogens, LY117018 and LY156758, were potent antiproliferative agents which did not stimulate invasiveness. The differential effects of these antiestrogenic agents on invasion correlated with changes in production of collagenase IV, while no significant change was seen in the chemotactic activity of the cells. Invasiveness was increased by 17β-estradiol or 4-hydroxytamoxifen after a few hours of treatment and was rapidly lost when 17β-estradiol was withdrawn. Stimulation of invasiveness with 17β-estradiol was blocked by the antiestrogen, LY117018. Cells from the MDA-MB-231 line which lacks estrogen receptors were not affected by estrogen or antiestrogen in terms of proliferation or invasion. These studies indicate that the invasiveness of MCF-7 cells is regulated by antiestrogens through the estrogen receptor and may be mediated by collagenase IV activity. Antiestrogens which reduce both the proliferation and invasiveness of these cells may be interesting new candidates for clinical application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Muscle invasive transitional cell carcinoma (TCC) of the bladder is associated with a high frequency of metastasis, resulting in poor prognosis for patients presenting with this disease. Models that capture and demonstrate step-wise enhancement of elements of the human metastatic cascade on a similar genetic background are useful research tools. We have utilized the transitional cell carcinoma cell line TSU-Pr1 to develop an in vivo experimental model of bladder TCC metastasis. TSU-Pr1 cells were inoculated into the left cardiac ventricle of SCID mice and the development of bone metastases was monitored using high resolution X-ray. Tumor tissue from a single bone lesion was excised and cultured in vitro to generate the TSU-Pr1-B1 subline. This cycle was repeated with the TSU-Pr1-B1 cells to generate the successive subline TSU-Pr1-B2. DNA profiling and karyotype analysis confirmed the genetic relationship of these three cell lines. In vitro, the growth rate of these cell lines was not significantly different. However, following intracardiac inoculation TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1-B2 exhibited increasing metastatic potential with a concomitant decrease in time to the onset of radiologically detectable metastatic bone lesions. Significant elevations in the levels of mRNA expression of the matrix metalloproteases (MMPs) membrane type 1-MMP (MT1-MMP), MT2-MMP and MMP-9, and their inhibitor, tissue inhibitor of metalloprotease-2 (TIMP-2), across the progressively metastatic cell lines, were detected by quantitative PCR. Given the role of MT1-MMP and TIMP-2 in MMP-2 activation, and the upregulation of MMP-9, these data suggest an important role for matrix remodeling, particularly basement membrane, in this progression. The TSU-Pr1-B1/B2 model holds promise for further identification of important molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca 2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPR TETRA) and observed significant changes in the potency of ATP (EC 50 0.175 μM (-EGF) versus 1.731 μM (+EGF), P<0.05), and the nature of the ATP-induced Ca 2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca 2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca 2+ homeostasis. To determine whether changes in ATP-mediated Ca 2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X 5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X 5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Loss of cell-cell adhesion in carcinoma cells may be an important step in the acquisition of an invasive, metastatic phenotype. We have examined the expression of the epithelial-specific cell adhesion molecule uvomorulin (E-cadherin, cell-CAM 120/80, L-CAM) in human breast cancer cell lines. We find that fibroblastoid, highly invasive, vimentin-expressing breast cancer cell lines do not express uvomorulin. Of the more epithelial-appearing, less invasive, keratin-expressing breast cancer cell lines, some express uvomorulin, and some do not. We examined the morphologies of the cell lines in the reconstituted basement membrane matrix Matrigel and measured the ability of the cells to traverse a Matrigel-coated filter as in vitro models for detachment of carcinoma cells from neighboring cells and invasion through basement membrane into surrounding tissue. Colonies of uvomorulin-positive cells have a characteristic fused appearance in Matrigel, whereas uvomorulin-negative cells appear detached. Cells which are uvomorulin negative and vimentin positive have a stellate morphology in Matrigel. We show that uvomorulin is responsible for the fused colony morphology in Matrigel since treatment of uvomorulin-positive MCF-7 cells with an antibody to uvomorulin caused the cells to detach from one another but did not induce invasiveness in these cells, as measured by their ability to cross a Matrigel-coated polycarbonate filter in a modified Boyden chamber assay. Two uvomorulin-negative, vimentin-negative cell lines are also not highly invasive as measured by this assay. We suggest that loss of uvomorulin-mediated cell-cell adhesion may be one of many changes involved in the progression of a carcinoma cell to an invasive phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kaposi's sarcoma (KS) is a relatively low grade neoplasm, classically occurring in the skin of elderly men. A more virulent and invasive form of Kaposi's sarcoma has been described in patients with acquired immune deficiency syndrome (AIDS). The origin and identification of the tumor cells in these lesions is controversial. Here we have studied the behavior of cells derived from KS lesions in an in vitro assay which measures the ability of cells to invade through a reconstituted basement membrane. In agreement with previous work, KS cells obtained under selective culture conditions were invasive showing activity comparable to that of malignant tumor cells. Normal fibroblasts, smooth muscle cells, and endothelial cells did not demonstrate invasive behavior under the same experimental conditions. To characterize further the nature of the KS cells we tested the chemotactic response of cells from the most invasive line to a variety of growth factors and compared their response to those of fibroblasts, smooth muscle, and endothelial cells. These studies suggest that normal cells respond to a unique repertoire of chemotactic factors. The chemotactic response of the KS cells most closely resembled that of smooth muscle cells and was quite distinct from endothelial cells. These results indicate that the KS-derived cultures contain invasive cells with a smooth muscle cell-like phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metastasis, the passage of primary tumour cells throughout the body via the vascular system and their subsequent proliferation into secondary lesions in distant organs, represents a poor prognosis and therefore an understandably feared event for cancer patients. Despite considerable advances in cancer diagnosis and treatment, most deaths are the result of metastases resistant to conventional treatment [1]. Rather than being a random process, metastasis involves a series of organised steps leading to the growth of a secondary tumour. Malignant tumours stimulate the production of new vessels by the host, and this process is a prerequisite for the increase in size of a new tumour [2]. Angiogenesis, not only permits tumour expansion but also allows the entry of tumour cells into the circulation and is probably the most vital event for the metastatic process [3]. Metastasis and angiogenesis [4] have received much attention in recent years. A biological understanding of both phenomena seems to be an urgent priority towards the search for an effective prevention and treatment of tumour progression. Studies in vitro and in vivo have shown that one of the most important barriers to the passage of malignant cells is the basement membrane. The crossing of such barriers is a vital step in the formation of a metastasis [5].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two in vitro and two in vivo assays for the study of human cancer invasion and metastasis are described. The assays include in vitro invasiveness through an artificial basement membrane (Matrigel®), invasiveness and metastasis in nude mice of subcutaneously injected LacZ-transduced human tumor cells, in vitro adherence to basement membrane components, and LacZ-transduced human cancer cells injected intravenously into nude mice. In studies of the processes involved in human cancer cell invasion and metastasis, these four assays were found to be complementary, and thus provide a set of test systems for preclinical screening of agents which interfere with these processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Breast cancer is characterized by hormonal regulation. The current article reviews the role of estrogen and polypeptide growth factors in control of proliferation and basement membrane invasion of breast cancer cells in vitro. The role of antiestrogens to regulate proliferation, invasion, and growth factor secretion is further highlighted. Finally, the use of in vitro cultures of breast cancer cells to model steps in the malignant progression of the disease is emphasized. The availability of hormone dependent and independent breast cancer cell lines should allow screening for better antiestrogens, antimetastatic drugs, and antagonists of local action of growth factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microenvironment plays a key role in the cellular differentiation of the two main cell lineages of the human breast, luminal epithelial, and myoepithelial. It is not clear, however, how the components of the microenvironment control the development of these cell lineages. To investigate how lineage development is regulated by 3-D culture and microenvironment components, we used the PMC42-LA human breast carcinoma cell line, which possesses stem cell characteristics. When cultured on a two-dimensional glass substrate, PMC42-LA cells formed a monolayer and expressed predominantly luminal epithelial markers, including cytokeratins 8, 18, and 19; E-cadherin; and sialomucin. The key myoepithelial-specific proteins α-smooth muscle actin and cytokeratin 14 were not expressed. When cultured within Engelbreth-Holm- Swarm sarcoma-derived basement membrane matrix (EHS matrix), PMC42-LA cells formed organoids in which the expression of luminal markers was reduced and the expression of other myoepithelial-specific markers (cytokeratin 17 and P-cadherin) was promoted. The presence of primary human mammary gland fibroblasts within the EHS matrix induced expression of the key myoepithelial-specific markers, α-smooth muscle actin and cytokeratin 14. Immortalized human skin fibroblasts were less effective in inducing expression of these key myoepithelial-specific markers. Confocal dual-labeling showed that individual cells expressed luminal or myoepithelial proteins, but not both. Conditioned medium from the mammary fibroblasts was equally effective in inducing myoepithelial marker expression. The results indicate that the myoepithelial lineage is promoted by the extracellular matrix, in conjunction with products secreted by breast-specific fibroblasts. Our results demonstrate a key role for the breast microenvironment in the regulation of breast lineage development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laminin has been shown to promote the malignant phenotype and the level of the 32/67 Kd laminin receptor has been found to correlate with Dukes' staging of colon cancer. A biopsy of a Dukes' stage B2 human colon carcinoma formed a tumor in a nude mouse after coinjection with Matrigel. The parental tumor and the murine tumor appeared identical at the histological level. A cell line LCC-C1 was established from the murine tumor. The cell line appeared moderately differentiated although it did not produce mucin in vitro; however, the xenograft in vivo did produce low levels of mucin. Laminin adherent and non-adherent cell lines were selected. The parental and the laminin-selected cell subclones adhered equally well to plastic and to fibronectin and showed similar growth rates on plastic. When injected subcutaneously into nude mice, the laminin-adherent cells formed relatively undifferentiated tumors that were twice as large as the parental cell tumors whereas the laminin non adherent cells formed very small, but highly differentiated tumors. These data demonstrate that subpopulations of tumor cells which differ in their tumorigenic properties can be selected based on their adhesion to laminin and thus provide models for studying the mechanisms of tumor growth.