993 resultados para background deep sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PS2644 deep-sea core sequence, retrieved from the northwestern margin of Iceland and covering the last 86 ka, exhibits high sedimentation rates during the last glacial cycle that allow the clear distinction of Greenland stadial (GS)/ interstadial (GI) cycles in the various proxy records. Abundance records of rhyolitic, basaltic and tachylytic tephra grains reveal several maxima. Tephra grains of all types were geochemically analyzed in 44 levels. A total of 92 tephras with a distinctive character have been defined within the glacial sequence of gravity core PS2644-5, whereas the Holocene record is dominated by reworked Vedde Ash grains and not suitable for tephra stratigraphic work. Of the 92 tephras only 19 geochemical populations have been linked with confidence to previously defined tephras such as from the Vedde Ash, Faeroe Marine Ash Zones (FMAZ) II and III and North Atlantic Ash Zone (NAAZ) II. For the glacial period informal names were given to 78 new tephras, most of which are basaltic tephras. Several of these layers have a unique geochemical character and might become new chronostratigraphic markers in the North Atlantic region. Linking the tephra populations to the volcanic system producing them, respectively, revealed that Icelandic eruptions dominate with 83 tephra geochemical populations and Jan Mayen with 9. Around 48% of the informal tephra layers linked to the Icelandic volcanic province are produced from either the Grimsvötn or the Veidivötn-Bardarbunga volcanic systems. The intervals spanning from Greenland Stadial (GS) 3 to Greenland Interstadial (GI) 4 (24.5-29 ka BP), from GI 8 to GS 10 (36.9-40.5 ka BP) and from GI 14 to GI 15.2 (50-56 ka BP) are the periods with the highest number of eruptions, all of which are associated with known tephra zones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples from sediment cores collected during the Swedish Deep-Sea Expedition 1947-1948 have been analyzed in the Geochemical laboratory of the Geological Survey of Sweden. Most samples were placed at our disposal by Professor Hans Pettersson, leader of the expedition mentioned. For complementary studies, samples from the Atlantic and Indian oceans were included in our investigation and the samples placed at our disposal by Professor B. Kullenberg, Göteborg. From the Tyrrhenian Sea we got samples from Professor E. Norin, Uppsala.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This monograph forms the fourth part of the tenth volume of the scientific results of the voyage of the German exploring ship Valdivia in the Atlantic and Indian Oceans, made during the years 1898-1899. These volumes are published under the editorship of Prof. Chun, the zoologist of Leipzig, who was leader of the expedition ; and Prof. E. Philippi with the cooperation of Sir John Murray. The nature of the materials brought up at various points during the voyage is well illustrated by a series of plates, similar to those accompanying the Challenger volumes. Among the concretions from the Agulhas Bank were found phosphatic nodules containing 33 per cent, of calcium carbonate, 28 of calcium phosphate, 14.6 of calcium sulphate, and 4.8 of magnesium carbonate, with some ferric oxide, alumina, and silica. These nodules were dredged at a depth of 155 metres. Off the coast of Namibia, a large quantity of manganese nodules were also dredged. Their chemical analysis performed at the Mineralogical Institute of the University Jena show similar composition as the nodules recovered by the "Challenger" at station 253 in the Pacific Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on newly discovered mud volcanoes located at about 4500 m water depth 90 km west of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a >400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical data (Cl, B, Sr, 87Sr/86Sr, Delta18O, DeltaD) reveal that fluids originate in oceanic crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings are rare, but given that the large area of transform-type plate boundaries has been barely investigated, such pathways of fluid discharge may provide an important, yet unappreciated link between the deeply buried oceanic crust and the deep ocean.