108 resultados para autoradiography


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Malignant glial brain tumors consistently overexpress neurokinin type 1 receptors. In classic seed-based brachytherapy, one to several rigid (125)I seeds are inserted, mainly for the treatment of small low-grade gliomas. The complex geometry of rapidly proliferating high-grade gliomas requires a diffusible system targeting tumor-associated surface structures to saturate the tumor, including its margins. EXPERIMENTAL DESIGN: We developed a new targeting vector by conjugating the chelator 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid to Arg(1) of substance P, generating a radiopharmaceutical with a molecular weight of 1,806 Da and an IC(50) of 0.88 +/- 0.34 nmol/L. Cell biological studies were done with glioblastoma cell lines. neurokinin type-1 receptor (NK1R) autoradiography was done with 58 tumor biopsies. For labeling, (90)Y was mostly used. To reduce the "cross-fire effect" in critically located tumors, (177)Lut and (213)Bi were used instead. In a pilot study, we assessed feasibility, biodistribution, and early and long-term toxicity following i.t. injection of radiolabeled 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid substance P in 14 glioblastoma and six glioma patients of WHO grades 2 to 3. RESULTS: Autoradiography disclosed overexpression of NK1R in 55 of 58 gliomas of WHO grades 2 to 4. Internalization of the peptidic vector was found to be specific. Clinically, the radiopharmeutical was distributed according to tumor geometry. Only transient toxicity was seen as symptomatic radiogenic edema in one patient (observation period, 7-66 months). Disease stabilization and/or improved neurologic status was observed in 13 of 20 patients. Secondary resection disclosed widespread radiation necrosis with improved demarcation. CONCLUSIONS: Targeted radiotherapy using diffusible peptidic vectors represents an innovative strategy for local control of malignant gliomas, which will be further assessed as a neoadjuvant approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to evaluate [(99m)Tc]Demotate 2 ([(99m)Tc-N(4) (0-1),Asp(0),Tyr(3)]octreotate) as a candidate for in vivo imaging of sst(2)-positive tumours and to compare it with [(111)In]DOTA-tate ([(111)In-DOTA(0),Tyr(3)]octreotate). METHODS: Labelling of Demotate 2 with (99m)Tc was performed at room temperature using SnCl(2) as reductant in the presence of citrate at alkaline pH. Radiochemical analysis involved ITLC and HPLC methods. Peptide conjugate affinities for sst(2) were determined by receptor autoradiography on rat brain cortex sections using [DOTA(0),(125)I-Tyr(3)]octreotate as the radioligand. The affinity profile of Demotate 2 for human sst(1)-sst(5) was studied by receptor autoradiography in cell preparations using the universal somatostatin radioligand [(125)I][Leu(8),(D: )Trp(22),Tyr(25)]somatostatin-28. The internalisation rates of [(99m)Tc]Demotate 2 and [(111)In]DOTA-tate were compared in sst(2)-positive and -negative control cell lines. Biodistribution of radiopeptides was studied in male Lewis rats bearing CA20948 tumours. RESULTS: Peptide conjugates showed selectivity and a high affinity binding for sst(2) (Demotate 2 IC(50)=3.2 nM and DOTA-tate IC(50)=5.4 nM). [(99m)Tc]Demotate 2, like [(111)In]DOTA-tate, internalised rapidly in all sst(2)-positive cells tested, but not in sst(2)-negative control cells. After injection in CA20948 tumour-bearing rats both radiopeptides showed high and specific uptake in the sst(2)-positive organs and in the implanted tumour and rapid excretion from non-target tissues via the kidneys. CONCLUSION: [(99m)Tc]Demotate 2, similarly to the known sst(2)-targeting agent [(111)In]DOTA-tate, showed promising biological qualities for application in the scintigraphy of sst(2)-positive tumours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Peptide receptors, overexpressed in specific cancers, represent new diagnostic and therapeutic targets. In this study, receptors for the gastrin-releasing peptide (GRP), and other members of the bombesin-family of peptides, were evaluated in ovarian neoplasms. METHODS: 75 primary, secondary and metastatic ovarian tumors were investigated for their bombesin-receptor subtype expression, incidence, localization and density using in vitro autoradiography on tissue sections with the universal radioligand (125)I-[D-Tyr(6), beta-Ala(11), Phe(13), Nle(14)]-bombesin(6-14) and the GRP-receptor subtype-preferring (125)I-[Tyr(4)]-bombesin. RESULTS: GRP-receptors were detected in 42/61 primary ovarian tumors; other bombesin-receptor subtypes (BB1, bb3) were rarely present (3/61). Two different tissue compartments expressed GRP-receptors: the tumoral vasculature was the predominant site of GRP-receptor expression (38/61), whereas neoplastic cells more rarely expressed GRP-receptors (14/61). GRP-receptor positive vessels were present in the various classes of ovarian tumors; generally, malignant tumors had a higher incidence of GRP-receptor positive vessels compared to their benign counterparts. The prevalence of such vessels was particularly high in ovarian carcinomas (16/19) and their metastases (5/5). The GRP-receptors were expressed in high density in the muscular vessel wall. Normal ovary (n=10) lacked GRP-receptors. CONCLUSIONS: The large amounts of GRP-receptors in ovarian tumor vessels suggest a role in tumoral vasculature and possibly angiogenesis. Further, these vessels might be targeted in vivo with bombesin analogs for diagnosis or for therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptide hormone receptors overexpressed in human tumors, such as somatostatin receptors, can be used for in vivo targeting for diagnostic and therapeutic purposes. A novel promising candidate in this field is the GLP-1 receptor, which was recently shown to be massively overexpressed in gut and lung neuroendocrine tumors--in particular, in insulinomas. Anticipating a major development of GLP-1 receptor targeting in nuclear medicine, our aim was to evaluate in vitro the GLP-1 receptor expression in a large variety of other tumors and to compare it with that in nonneoplastic tissues. METHODS: The GLP-1 receptor protein expression was qualitatively and quantitatively investigated in a broad spectrum of human tumors (n=419) and nonneoplastic human tissues (n=209) with receptor autoradiography using (125)I-GLP-1(7-36)amide. Pharmacologic competition experiments were performed to provide proof of specificity of the procedure. RESULTS: GLP-1 receptors were expressed in various endocrine tumors, with particularly high amounts in pheochromocytomas, as well as in brain tumors and embryonic tumors but not in carcinomas or lymphomas. In nonneoplastic tissues, GLP-1 receptors were present in generally low amounts in specific tissue compartments of several organs--namely, pancreas, intestine, lung, kidney, breast, and brain; no receptors were identified in lymph nodes, spleen, liver, or the adrenal gland. The rank order of potencies for receptor binding--namely, GLP-1(7-36)amide = exendin-4 >> GLP-2 = glucagon(1-29)--provided proof of specific GLP-1 receptor identification. CONCLUSION: The GLP-1 receptors may represent a novel molecular target for in vivo scintigraphy and targeted radiotherapy for a variety of GLP-1 receptor-expressing tumors. For GLP-1 receptor scintigraphy, a low-background signal can be expected, on the basis of the low receptor expression in the normal tissues surrounding tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Gallium-68 is a metallic positron emitter with a half-life of 68 min that is ideal for the in vivo use of small molecules, such as [68Ga-DOTA,Tyr3]octreotide, in the diagnostic imaging of somatostatin receptor-positive tumours. In preclinical studies it has shown a striking superiority over its 111In-labelled congener. The purpose of this study was to evaluate whether third-generation somatostatin-based, radiogallium-labelled peptides show the same superiority. METHODS: Peptides were synthesised on solid phase. The receptor affinity was determined by in vitro receptor autoradiography. The internalisation rate was studied in AR4-2J and hsst-HEK-transfected cell lines. The pharmacokinetics was studied in a rat xenograft tumour model, AR4-2J. RESULTS: All peptides showed high affinities on hsst2, with the highest affinity for the Ga(III)-complexed peptides. On hsst3 the situation was reversed, with a trend towards lower affinity of the Ga(III) peptides. A significantly increased internalisation rate was found in sst2-expressing cells for all 67Ga-labelled peptides. Internalisation into HEK-sst3 was usually faster for the 111In-labelled peptides. No internalisation was found into sst5. Biodistribution studies employing [67Ga-DOTA,1-Nal3]octreotide in comparison to [111In-DOTA,1-Nal3]octreotide and [67Ga-DOTA,Tyr3]octreotide showed a significantly higher and receptor-mediated uptake of the two 67Ga-labelled peptides in the tumour and somatostatin receptor-positive tissues. A patient study illustrated the potential advantage of a broad receptor subtype profile radiopeptide over a high-affinity sst2-selective radiopeptide. CONCLUSION: This study demonstrates that 67/68Ga-DOTA-octapeptides show distinctly better preclinical, pharmacological performances than the 111In-labelled peptides, especially on sst2-expressing cells and the corresponding animal models. They may be excellent candidates for further development for clinical studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many peptide hormone receptors are over-expressed in human cancer, permitting an in vivo targeting of tumors for diagnostic and therapeutic purposes. NPY receptors are novel and promising candidates in this field. Using in vitro receptor autoradiography, Y1 and Y2 receptors have been found to be expressed in breast carcinomas, adrenal gland and related tumors, renal cell carcinomas, and ovarian cancers in both tumor cells and tumor-associated blood vessels. Pathophysiologically, tumoral NPY receptors may be activated by endogenous NPY released from intratumoral nerve fibers or tumor cells themselves, and mediate NPY effects on tumor cell proliferation and tumoral blood supply. Clinically, tumoral NPY receptors may be targeted with NPY analogs coupled with adequate radionuclides or cytotoxic agents for a scintigraphic tumor imaging and/or tumor therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: Peptide receptor radionuclide therapy using the somatostatin analogue [(177)Lu-DOTA(0),Tyr(3)]octreotate is a convincing treatment modality for metastasized neuroendocrine tumors. Therapeutic doses are administered in 4 cycles with 6-10 week intervals. A high somatostatin receptor density on tumor cells is a prerequisite at every administration to enable effective therapy. In this study, the density of the somatostatin receptor subtype 2 (sst2) was investigated in the rat CA20948 pancreatic tumor model after low dose [(177)Lu-DOTA(0), Tyr(3)]octreotate administration resulting in approximately 20 Gy tumor radiation absorbed dose, whereas 60 Gy is needed to induce complete tumor regression in these and the majority of tumors. METHODS: Sixteen days after inoculation of the CA20948 tumor, male Lewis rats were injected with 185 MBq [(177)Lu-DOTA(0),Tyr(3)]octreotate to initiate a decline in tumor size. Approximately 40 days after injection, tumors re-grew progressively after initial response. Quantification of sst2 expression was performed using in vitro autoradiography on frozen sections of three groups: control (not-treated) tumors, tumors in regression and tumors in re-growth. Histology and proliferation were determined using HE- and anti-Ki-67-staining. RESULTS: The sst2 expression on CA20948 tumor cells decreased significantly after therapy to 5% of control level. However, tumors escaping from therapy showed an up-regulated sst2 level of 2-5 times higher sst2 density compared to control tumors. CONCLUSION: After a suboptimal therapeutic dose of [(177)Lu-DOTA(0),Tyr(3)]octreotate, escape of tumors is likely to occur. Since these cells show an up-regulated sst2 receptor density, a next therapeutic administration of radiolabelled sst2 analogue can be expected to be highly effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Peptide receptors are frequently overexpressed in human tumors, allowing receptor-targeted scintigraphic imaging and therapy with radiolabeled peptide analogues. Neuropeptide Y (NPY) receptors are new candidates for these applications, based on their high expression in specific cancers. Because NPY receptors are expressed in selected sarcoma cell lines and because novel treatment options are needed for sarcomas, this study assessed the NPY receptor in primary human sarcomas. EXPERIMENTAL DESIGN: Tumor tissues of 88 cases, including Ewing sarcoma family of tumors (ESFT), synovial sarcomas, osteosarcomas, chondrosarcomas, liposarcomas, angiosarcomas, rhabdomyosarcomas, leiomyosarcomas, and desmoid tumors, were investigated for NPY receptor protein with in vitro receptor autoradiography using (125)I-labeled NPY receptor ligands and for NPY receptor mRNA expression with in situ hybridization. RESULTS: ESFT expressed the NPY receptor subtype Y1 on tumor cells in remarkably high incidence (84%) and density (mean, 5,314 dpm/mg tissue). Likewise, synovial sarcomas expressed Y1 on tumor cells in high density (mean, 7,497 dpm/mg; incidence, 40%). The remaining tumors expressed NPY receptor subtypes Y1 or Y2 at lower levels. Moreover, many of the sarcomas showed Y1 expression on intratumoral blood vessels. In situ hybridization for Y1 mRNA confirmed the autoradiography results. CONCLUSIONS: NPY receptors are novel molecular markers for human sarcomas. Y1 may inhibit growth of specific sarcomas, as previously shown in an in vivo mouse model of human ESFT. The high Y1 expression on tumor cells of ESFT and synovial sarcomas and on blood vessels in many other sarcomas represents an attractive basis for an in vivo tumor targeting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptide receptors are often overexpressed in tumors, and they may be targeted in vivo. We evaluated neuropeptide Y (NPY) receptor expression in 131 primary human brain tumors, including gliomas, embryonal tumors, meningiomas, and pituitary adenomas, by in vitro receptor autoradiography using the 125I-labeled NPY receptor ligand peptide YY in competition with NPY receptor subtype-selective analogs. Receptor functionality was investigated in selected cases using [35S]GTPgammaS-binding autoradiography. World Health Organization Grade IV glioblastomas showed a remarkably high expression of the NPY receptor subtype Y2 with respect to both incidence (83%) and density (mean, 4,886 dpm/mg tissue); astrocytomas World Health Organization Grades I to III and oligodendrogliomas also exhibited high Y2 incidences but low Y2 densities. In glioblastomas, Y2 agonists specifically stimulated [35S]GTPgammaS binding, suggesting that tumoral Y2 receptors were functional. Furthermore, nonneoplastic nerve fibers containing NPY peptide were identified in glioblastomas by immunohistochemistry. Medulloblastomas, primitive neuroectodermal tumors of the CNS, and meningiomas expressed Y1 and Y2 receptor subtypes in moderate incidence and density. In conclusion, Y2 receptors in glioblastomas that are activated by NPY originating from intratumoral nerve fibers might mediate functional effects on the tumor cells. Moreover, identification of the high expression of NPY receptors in high-grade gliomas and embryonal brain tumors provides the basis for in vivo targeting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Diethylenetriamine-pentaacetic acid (DTPA)-coupled minigastrins are unsuitable for therapeutic application with the available beta-emitting radiometals due to low complex stability. Low tumour-to-kidney ratio of the known radiopharmaceuticals is further limiting their potency. We used macrocyclic chelators for coupling to increase complex stability, modified the peptide sequence to enhance radiolytic stability and studied tumour-to-kidney ratio and metabolic stability using (111)In-labelled derivatives. METHODS: Gastrin derivatives with decreasing numbers of glutamic acids were synthesised using (111)In as surrogate for therapeutic radiometals for in vitro and in vivo studies. Gastrin receptor affinities of the (nat)In-metallated compounds were determined by receptor autoradiography using (125)I-CCK as radioligand. Internalisation was evaluated in AR4-2J cells. Enzymatic stability was determined by incubating the (111)In-labelled peptides in human serum. Biodistribution was performed in AR4-2J-bearing Lewis rats. RESULTS: IC(50) values of the (nat)In-metallated gastrin derivatives vary between 1.2 and 4.8 nmol/L for all methionine-containing derivatives. Replacement of methionine by norleucine, isoleucine, methionine-sulfoxide and methionine-sulfone resulted in significant decrease of receptor affinity (IC(50) between 9.9 and 1,195 nmol/L). All cholecystokinin receptor affinities were >100 nmol/L. All (111)In-labelled radiopeptides showed receptor-specific internalisation. Serum mean-life times varied between 2.0 and 72.6 h, positively correlating with the number of Glu residues. All (111)In-labelled macrocyclic chelator conjugates showed higher tumour-to-kidney ratios after 24 h (0.37-0.99) compared to (111)In-DTPA-minigastrin 0 (0.05). Tumour wash out between 4 and 24 h was low. Imaging studies confirmed receptor-specific blocking of the tumour uptake. CONCLUSIONS: Reducing the number of glutamates increased tumour-to-kidney ratio but resulted in lower metabolic stability. The properties of the macrocyclic chelator-bearing derivatives make them potentially suitable for clinical purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastrointestinal peptide hormone receptors, like somatostatin receptors, are often overexpressed in human cancer, allowing receptor-targeted tumor imaging and therapy. A novel candidate for these applications is the secretin receptor recently identified in pancreatic and cholangiocellular carcinomas. In the present study, secretin receptors were assessed in a non-gastrointestinal tissue, the human lung. Non-small-cell lung cancers (n=26), small-cell lung cancers (n=10), bronchopulmonary carcinoid tumors (n=29), and non-neoplastic lung (n=46) were investigated for secretin receptor protein expression with in vitro receptor autoradiography, using (125)I-[Tyr(10)] rat secretin and for secretin receptor transcripts with RT-PCR. Secretin receptor protein expression was found in 62% of bronchopulmonary carcinoids in moderate to high density, in 12% of non-small cell lung cancers in low density, but not in small cell lung cancers. In tumors found to be secretin receptor positive by autoradiography, RT-PCR revealed transcripts for the wild-type secretin receptor and for novel secretin receptor splice variants. In the non-neoplastic lung, secretin receptor protein expression was observed in low density along the alveolar septa in direct tumor vicinity in cases of acute inflammation, but not in histologically normal lung. In the autoradiographically positive peritumoral lung, RT-PCR showed transcripts for the wild-type secretin receptor and for a secretin receptor spliceoform different from those occurring in lung and gut tumors. In conclusion, secretin receptors are new markers for bronchopulmonary carcinoid tumors, and represent the molecular basis for an in vivo targeting of carcinoid tumors for diagnosis and therapy. Furthermore, secretin receptors may play a role in peritumoral lung pathophysiology. Secretin receptor mis-splicing specifically occurs in tumor and non-tumor lung pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two bombesin analogs, Demobesin 4 and Demobesin 1, were characterized in vitro as gastrin-releasing peptide (GRP) receptor agonist and antagonist, respectively, and were compared as (99m)Tc-labeled ligands for their in vitro and in vivo tumor-targeting properties. METHODS: N(4)-[Pro(1),Tyr(4),Nle(14)]Bombesin (Demobesin 4) and N(4)-[d-Phe(6),Leu-NHEt(13),des-Met(14)]bombesin(6-14) (Demobesin 1) were characterized in vitro for their binding properties with GRP receptor autoradiography using GRP receptor-transfected HEK293 cells, PC3 cells, and human prostate cancer specimens. Their ability to modulate calcium mobilization in PC3 and transfected HEK293 cells was analyzed as well as their ability to trigger internalization of the GRP receptor in transfected HEK293 cells, as determined qualitatively by immunofluorescence microscopy and quantitatively by enzyme-linked immunosorbent assay (ELISA). Further, their internalization properties as (99m)Tc-labeled radioligands were tested in vitro in both cell lines. Finally, their biodistribution was analyzed in PC3 tumor-bearing mice. RESULTS: A comparable binding affinity with the 50% inhibitory concentration (IC(50)) in the nanomolar range was measured for Demobesin 4 and Demobesin 1 in all tested tissues. Demobesin 4 behaved as an agonist by strongly stimulating calcium mobilization and by triggering GRP receptor internalization. Demobesin 1 was ineffective in stimulating calcium mobilization and in triggering GRP receptor internalization. However, in these assays, it behaved as a competitive antagonist as it reversed completely the agonist-induced effects in both systems. (99m)Tc-Labeled Demobesin 1 was only weakly taken up by PC3 cells or GRP receptor-transfected HEK293 cells (10% and 5%, respectively, of total added radioactivity) compared with (99m)Tc-labeled Demobesin 4 (45% of total added radioactivity in both cell lines). Remarkably, the biodistribution study revealed a much more pronounced uptake at 1, 4, and 24 h after injection of (99m)Tc-labeled Demobesin 1 in vivo into PC3 tumors than (99m)Tc-labeled Demobesin 4. In vivo competition experiments demonstrated a specific uptake in PC3 tumors and in physiologic GRP receptor-expressing tissues. The tumor-to-kidney ratios were 0.7 for Demobesin 4 and 5.2 for Demobesin 1 at 4 h. CONCLUSION: This comparative in vitro/in vivo study with Demobesin 1 and Demobesin 4 indicates that GRP receptor antagonists may be superior targeting agents to GRP receptor agonists, suggesting a change of paradigm in the field of bombesin radiopharmaceuticals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DJ-1 is mutated in autosomal recessive, early onset Parkinson's disease but the exact localization of the DJ-1 gene product in the mammalian brain is largely unknown. We aimed to evaluate the DJ-1 mRNA expression pattern in the mouse brain. Serial coronal sections of brains of five male and five female adult mice were investigated by using in situ hybridization with a DJ-1 specific 35S-labeled oligonucleotide probe. Hybridized sections were analyzed after exposure to autoradiography films and after coating with a photographic emulsion. DJ-1 was heterogeneously expressed throughout the mouse central nervous system. A high expression of DJ-1 mRNA was detected in neuronal and non-neuronal populations of several structures of the motor system such as the substantia nigra, the red nucleus, the caudate putamen, the globus pallidus, and the deep nuclei of the cerebellum. Furthermore, DJ-1 mRNA was also highly expressed in non-motor structures including the hippocampus, the olfactory bulb, the reticular nucleus of the thalamus, and the piriform cortex. The high expression of DJ-1 mRNA in brain regions involved in motor control is compatible with the occurrence of parkinsonian symptoms after DJ-1 mutations. However, expression in other regions indicates that a dysfunction of DJ-1 may contribute to additional clinical features in patients with a DJ-1 mutation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumoral gastrin-releasing peptide (GRP) receptors are potential targets for diagnosis and therapy using radiolabeled or cytotoxic GRP analogs. GRP-receptor overexpression has been detected in endocrine-related cancer cells and, more recently, also in the vascular bed of selected tumors. More information on vascular GRP-receptors in cancer is required to asses their potential for vascular targeting applications. Therefore, frequent human cancers (n = 368) were analyzed using in vitro GRP-receptor autoradiography on tissue sections with the (125)I-[Tyr(4)]-bombesin radioligand and/or the universal radioligand (125)I-[d-Tyr(6), beta-Ala(11), Phe(13), Nle(14)]-bombesin(6-14). GRP-receptor expressing vessels were evaluated in each tumor group for prevalence, quantity (vascular score), and GRP-receptor density. Prevalence of vascular GRP-receptors was variable, ranging from 12% (prostate cancer) to 92% (urinary tract cancer). Different tumor types within a given site had divergent prevalence of vascular GRP-receptors (e.g. lung: small cell cancer: 0%; adenocarcinoma: 59%; squamous carcinoma: 83%). Also the vascular score varied widely, with the highest score in urinary tract cancer (1.69), moderate scores in lung (0.91), colon (0.88), kidney (0.84), and biliary tract (0.69) cancers and low scores in breast (0.39) and prostate (0.14) cancers. Vascular GRP-receptors were expressed in the muscular vessel wall in moderate to high densities. Normal non-neoplastic control tissues from these organs lacked vascular GRP-receptors. In conclusion, tumoral vessels in all evaluated sites express GRP-receptors, suggesting a major biological function of GRP-receptors in neovasculature. Vascular GRP-receptor expression varies between the tumor types indicating tumor-specific mechanisms in their regulation. Urinary tract cancers express vascular GRP-receptors so abundantly, that they are promising candidates for vascular targeting applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposed sst(1) pharmacophore (J. Med. Chem. 2005, 48, 523-533) derived from the NMR structures of a family of mono- and dicyclic undecamers was used to design octa-, hepta-, and hexamers with high affinity and selectivity for the somatostatin sst(1) receptor. These compounds were tested for their in vitro binding properties to all five somatostatin (SRIF) receptors using receptor autoradiography; those with high SRIF receptor subtype 1 (sst(1)) affinity and selectivity were shown to be agonists when tested functionally in a luciferase reporter gene assay. Des-AA(1,4-6,10,12,13)-[DTyr(2),DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (25) was radio-iodinated ((125)I-25) and specifically labeled sst(1)-expressing cells and tissues. 3D NMR structures were calculated for des-AA(1,4-6,10,12,13)-[DPhe(2),DTrp(8),IAmp(9)]-SRIF-Thr-NH(2) (16), des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (23), and des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9),Tyr(11)]-SRIF-NH(2) (27) in DMSO. Though the analogues have the sst(1) pharmacophore residues at the previously determined distances from each other, the positioning of the aromatic residues in 16, 23, and 27 is different from that described earlier, suggesting an induced fit mechanism for sst(1) binding of these novel, less constrained sst(1)-selective family members.