992 resultados para auditory attention detection
Resumo:
The use of quantum dots (QDs) in the area of fingermark detection is currently receiving a lot of attention in the forensic literature. Most of the research efforts have been devoted to cadmium telluride (CdTe) quantum dots often applied as powders to the surfaces of interests. Both the use of cadmium and the nano size of these particles raise important issues in terms of health and safety. This paper proposes to replace CdTe QDs by zinc sulphide QDs doped with copper (ZnS:Cu) to address these issues. Zinc sulphide-copper doped QDs were successfully synthesized, characterized in terms of size and optical properties and optimized to be applied for the detection of impressions left in blood, where CdTe QDs proved to be efficient. Effectiveness of detection was assessed in comparison with CdTe QDs and Acid Yellow 7 (AY7, an effective blood reagent), using two series of depletive blood fingermarks from four donors prepared on four non-porous substrates, i.e. glass, transparent polypropylene, black polyethylene and aluminium foil. The marks were cut in half and processed separately with both reagents, leading to two comparison series (ZnS:Cu vs. CdTe, and ZnS:Cu vs. AY7). ZnS:Cu proved to be better than AY7 and at least as efficient as CdTe on most substrates. Consequently, copper-doped ZnS QDs constitute a valid substitute for cadmium-based QDs to detect blood marks on non-porous substrates and offer a safer alternative for routine use.
Resumo:
ABSTRACT (English)An accurate processing of the order between sensory events at the millisecond time scale is crucial for both sensori-motor and cognitive functions. Temporal order judgment (TOJ) tasks, is the ability of discriminating the order of presentation of several stimuli presented in a rapid succession. The aim of the present thesis is to further investigate the spatio-temporal brain mechanisms supporting TOJ. In three studies we focus on the dependency of TOJ accuracy on the brain states preceding the presentation of TOJ stimuli, the neural correlates of accurate vs. inaccurate TOJ and whether and how TOJ performance can be improved with training.In "Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy" (Bernasconi et al., 2011), we investigated if the brain activity immediately preceding the presentation of the stimuli modulates TOJ performance. By contrasting the electrophysiological activity before the stimulus presentation as a function of TOJ accuracy we observed a stronger pre-stimulus beta (20Hz) oscillatory activity within the left posterior sylvian region (PSR) before accurate than inaccurate TOJ trials.In "Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment" (Bernasconi et al., 2010a), and "Plastic brain mechanisms for attaining auditory temporal order judgment proficiency" (Bernasconi et al., 2010b), we investigated the spatio-temporal brain dynamics underlying auditory TOJ. In both studies we observed a topographic modulation as a function of TOJ performance at ~40ms after the onset of the first sound, indicating the engagement of distinct configurations of intracranial generators. Source estimations in the first study revealed a bilateral PSR activity for both accurate and inaccurate TOJ trials. Moreover, activity within left, but not right, PSR correlated with TOJ performance. Source estimations in the second study revealed a training-induced left lateralization of the initial bilateral (i.e. PSR) brain response. Moreover, the activity within the left PSR region correlated with TOJ performance.Based on these results, we suggest that a "temporal stamp" is established within left PSR on the first sound within the pair at early stages (i.e. ~40ms) of cortical processes, but is critically modulated by inputs from right PSR (Bernasconi et al., 2010a; b). The "temporal stamp" on the first sound may be established via a sensory gating or prior entry mechanism.Behavioral and brain responses to identical stimuli can vary due to attention modulation, vary with experimental and task parameters or "internal noise". In a fourth experiment (Bernasconi et al., 2011b) we investigated where and when "neural noise" manifest during the stimulus processing. Contrasting the AEPs of identical sound perceived as High vs. Low pitch, a topographic modulation occurred at ca. 100ms after the onset of the sound. Source estimation revealed activity within regions compatible with pitch discrimination. Thus, we provided neurophysiological evidence for the variation in perception induced by "neural noise".ABSTRACT (French)Un traitement précis de l'ordre des événements sensoriels sur une échelle de temps de milliseconde est crucial pour les fonctions sensori-motrices et cognitives. Les tâches de jugement d'ordre temporel (JOT), consistant à présenter plusieurs stimuli en succession rapide, sont traditionnellement employées pour étudier les mécanismes neuronaux soutenant le traitement d'informations sensorielles qui varient rapidement. Le but de cette thèse est d'étudier le mécanisme cérébral soutenant JOT. Dans les trois études présentées nous nous sommes concentrés sur les états du cerveau précédant la présentation des stimuli de JOT, les bases neurales pour un JOT correct vs. incorrect et sur la possibilité et les moyens d'améliorer l'exécution du JOT grâce à un entraînement.Dans "Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy" (Bernasconi et al., 2011),, nous nous sommes intéressé à savoir si l'activité oscillatoire du cerveau au pré-stimulus modulait la performance du JOT. Nous avons contrasté l'activité électrophysiologique en fonction de la performance TOJ, mesurant une activité oscillatoire beta au pré-stimulus plus fort dans la région sylvian postérieure gauche (PSR) liée à un JOT correct.Dans "Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment" (Bernasconi et al., 2010a), et "Plastic brain mechanisms for attaining auditory temporal order judgment proficiency" (Bernasconi et al., 2010b), nous avons étudié la dynamique spatio-temporelle dans le cerveau impliqué dans le traitement du JOT auditif. Dans ses deux études, nous avons observé une modulation topographique à ~40ms après le début du premier son, en fonction de la performance JOT, indiquant l'engagement des configurations de générateurs intra- crâniens distincts. La localisation de source dans la première étude indique une activité bilatérale de PSR pour des JOT corrects vs. incorrects. Par ailleurs, l'activité dans PSR gauche, mais pas dans le droit, est corrélée avec la performance du JOT. La localisation de source dans la deuxième étude indiquait une latéralisation gauche induite par l'entraînement d'une réponse initialement bilatérale du cerveau. D'ailleurs, l'activité dans la région PSR gauche corrèlait avec la performance de TOJ.Basé sur ces résultats, nous proposons qu'un « timbre-temporel » soit établi très tôt (c.-à-d. à ~40ms) sur le premier son par le PSR gauche, mais module par l'activité du PSR droite (Bernasconi et al., 2010a ; b). « Le timbre- temporel » sur le premier son peut être établi par le mécanisme neuronal de type « sensory gating » ou « prior entry ».Les réponses comportementales et du cerveau aux stimuli identiques peut varier du à des modulations d'attention ou à des variations dans les paramètres des tâches ou au bruit interne du cerveau. Dans une quatrième expérience (Bernasconi et al. 2011B), nous avons étudié où et quand le »bruit neuronal« se manifeste pendant le traitement des stimuli. En contrastant les AEPs de sons identiques perçus comme aigus vs. grave, nous avons mesuré une modulation topographique à env. 100ms après l'apparition du son. L'estimation de source a révélé une activité dans les régions compatibles avec la discrimination de fréquences. Ainsi, nous avons fourni des preuves neurophysiologiques de la variation de la perception induite par le «bruit neuronal».
Resumo:
Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.
Resumo:
INTRODUCTION: A significant proportion of prematurely born children encounter behavioral difficulties, such as attention deficit or hyperactivity, which could be due to executive function disorders. AIMS: To examine whether the standard neurodevelopmental assessment offered to premature children in Switzerland recognizes executive function disorders. METHODS: The study population consisted of 49 children born before 29 weeks of gestation who were examined between 5 and 6 years of age with a standard assessment, with additional items to assess executive functioning. Children with severe neurodevelopmental impairment were excluded (mental retardation, cerebral palsy, autism). Standard assessment consisted in the Kaufman Assessment Battery for Children (K-ABC), which comprises three subscales: sequential processes (analysis of sequential information), simultaneous processes (global analysis of visual information), and composite mental processes (CMP) (result of the other two scales), as well as a behavioral evaluation using the standardized Strengths and Difficulties Questionnaire (SDQ). Executive functioning was assessed with tasks evaluating visual attention, divided attention, and digit memory as well as with a specialized questionnaire, the Behavior Rating Index of Executive Functions (BRIEF), which evaluates several aspects of executive function (regulation, attention, flexibility, working memory, etc). RESULTS: Children were divided according to their results on the three K-ABC scales (< or>85), and the different neuropsychological tasks assessing executive function were compared between the groups. The CMP did not differentiate children with executive difficulties, whereas a score<85 on the sequential processes was significantly associated with worse visual and divided attention. There was a strong correlation between the SDQ and the BRIEF questionnaires. For both questionnaires, children receiving psychotherapy had significantly higher results. Children who presented behavioral problems assessed with the SDQ presented significantly higher scores on the BRIEF. CONCLUSION: A detailed analysis of the standard neurodevelopmental assessment allows the identification of executive function disorders in premature children. Children who performed below 85 on the sequential processes of the K-ABC had significantly more attentional difficulties on the neuropsychological tasks and therefore have to be recognized and carefully followed. Emotional regulation had a strong correlation with behavioral difficulties, which were suitably assessed with the SDQ, recognized by the families, and treated.
Resumo:
The neural response to a violation of sequences of identical sounds is a typical example of the brain's sensitivity to auditory regularities. Previous literature interprets this effect as a pre-attentive and unconscious processing of sensory stimuli. By contrast, a violation to auditory global regularities, i.e. based on repeating groups of sounds, is typically detectable when subjects can consciously perceive them. Here, we challenge the notion that global detection implies consciousness by testing the neural response to global violations in a group of 24 patients with post-anoxic coma (three females, age range 45-87 years), treated with mild therapeutic hypothermia and sedation. By applying a decoding analysis to electroencephalographic responses to standard versus deviant sound sequences, we found above-chance decoding performance in 10 of 24 patients (Wilcoxon signed-rank test, P < 0.001), despite five of them being mildly hypothermic, sedated and unarousable. Furthermore, consistently with previous findings based on the mismatch negativity the progression of this decoding performance was informative of patients' chances of awakening (78% predictive of awakening). Our results show for the first time that detection of global regularities at neural level exists despite a deeply unconscious state.
Resumo:
Interactions between stimuli's acoustic features and experience-based internal models of the environment enable listeners to compensate for the disruptions in auditory streams that are regularly encountered in noisy environments. However, whether auditory gaps are filled in predictively or restored a posteriori remains unclear. The current lack of positive statistical evidence that internal models can actually shape brain activity as would real sounds precludes accepting predictive accounts of filling-in phenomenon. We investigated the neurophysiological effects of internal models by testing whether single-trial electrophysiological responses to omitted sounds in a rule-based sequence of tones with varying pitch could be decoded from the responses to real sounds and by analyzing the ERPs to the omissions with data-driven electrical neuroimaging methods. The decoding of the brain responses to different expected, but omitted, tones in both passive and active listening conditions was above chance based on the responses to the real sound in active listening conditions. Topographic ERP analyses and electrical source estimations revealed that, in the absence of any stimulation, experience-based internal models elicit an electrophysiological activity different from noise and that the temporal dynamics of this activity depend on attention. We further found that the expected change in pitch direction of omitted tones modulated the activity of left posterior temporal areas 140-200 msec after the onset of omissions. Collectively, our results indicate that, even in the absence of any stimulation, internal models modulate brain activity as do real sounds, indicating that auditory filling in can be accounted for by predictive activity.
Resumo:
In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing.
Resumo:
Covert spatial attention produces biases in perceptual and neural responses in the absence of overt orienting movements. The neural mechanism that gives rise to these effects is poorly understood. Here we report the relation between fixational eye movements, namely eye vergence, and covert attention. Visual stimuli modulate the angle of eye vergence as a function of their ability to capture attention. This illustrates the relation between eye vergence and bottom-up attention. In visual and auditory cue/no-cue paradigms, the angle of vergence is greater in the cue condition than in the no-cue condition. This shows a top-down attention component. In conclusion, observations reveal a close link between covert attention and modulation in eye vergence during eye fixation. Our study suggests a basis for the use of eye vergence as a tool for measuring attention and may provide new insights into attention and perceptual disorders.
Resumo:
Fungi of the genus Fusarium cause a variety of difficult to control diseases in different crops, including winter cereals and maize. Among the species of this genus Fusarium graminearum deserves attention. The aim of this work was to develop a semi-selective medium to study this fungus. In several experiments, substrates for fungal growth were tested, including fungicides and antibiotics such as iprodiona, nystatin and triadimenol, and the antibacterial agents streptomycin and neomycin sulfate. Five seed samples of wheat, barley, oat, black beans and soybeans for F. graminearum detection by using the media Nash and Snyder agar (NSA), Segalin & Reis agar (SRA) and one-quarter dextrose agar (1/4PDA; potato 50g; dextrose 5g and agar 20g), either unsupplemented or supplemented with various concentrations of the antimicrobial agents cited above. The selected components and concentrations (g.L-1) of the proposed medium, Segalin & Reis agar (SRA-FG), were: iprodiona 0.05; nystatin 0,025; triadimenol 0.015; neomycin sulfate 0.05; and streptomycin sulfate, 0.3 added of ¼ potato sucrose agar. In the isolation from seeds of cited plant species, the sensitivity of this medium was similar to that of NSA but with de advantage of maintaining the colony morphological aspects similar to those observed in potato-dextrose-agar medium.
Resumo:
Preattentive perception of occasional deviating stimuli in the stream of standard stimuli can be recorded with cognitive event-related potential (ERP) mismatch negativity (MMN). The earlier detection of stimuli at the auditory cortex can be examined with N1 and P2 ERPs. The MMN recording does not require co-operation, it correlates with perceptual threshold, and even complex sounds can be used as stimuli. The aim of this study was to examine different aspects that should be considered when measuring discrimination of hearing with ERPs. The MMN was found to be stimulusintensity- dependent. As the intensity of sine wave stimuli was increased from 40 to 80 dB HL, MMN mean amplitudes increased. The effect of stimulus frequency on the MMN was studied so that the pitch difference would be equal in each stimulus block according to the psychophysiological mel scale or the difference limen of frequency (DLF). However, the blocks differed from each other. The contralateral white noise masking (50 dB EML) was found to attenuate the MMN amplitude when the right ear was stimulated. The N1 amplitude was attenuated and, in contrast, P2 amplitude was not affected by contralateral white noise masking. The perception and production of vowels by four postlingually deafened patients with a cochlear implant were studied. The MMN response could be elicited in the patient with the best vowel perception abilities. The results of the studies show that concerning the MMN recordings, the stimulus parameters and recording procedure design have a great influence on the results.
Resumo:
The inferior colliculus is a primary relay for the processing of auditory information in the brainstem. The inferior colliculus is also part of the so-called brain aversion system as animals learn to switch off the electrical stimulation of this structure. The purpose of the present study was to determine whether associative learning occurs between aversion induced by electrical stimulation of the inferior colliculus and visual and auditory warning stimuli. Rats implanted with electrodes into the central nucleus of the inferior colliculus were placed inside an open-field and thresholds for the escape response to electrical stimulation of the inferior colliculus were determined. The rats were then placed inside a shuttle-box and submitted to a two-way avoidance paradigm. Electrical stimulation of the inferior colliculus at the escape threshold (98.12 ± 6.15 (A, peak-to-peak) was used as negative reinforcement and light or tone as the warning stimulus. Each session consisted of 50 trials and was divided into two segments of 25 trials in order to determine the learning rate of the animals during the sessions. The rats learned to avoid the inferior colliculus stimulation when light was used as the warning stimulus (13.25 ± 0.60 s and 8.63 ± 0.93 s for latencies and 12.5 ± 2.04 and 19.62 ± 1.65 for frequencies in the first and second halves of the sessions, respectively, P<0.01 in both cases). No significant changes in latencies (14.75 ± 1.63 and 12.75 ± 1.44 s) or frequencies of responses (8.75 ± 1.20 and 11.25 ± 1.13) were seen when tone was used as the warning stimulus (P>0.05 in both cases). Taken together, the present results suggest that rats learn to avoid the inferior colliculus stimulation when light is used as the warning stimulus. However, this learning process does not occur when the neutral stimulus used is an acoustic one. Electrical stimulation of the inferior colliculus may disturb the signal transmission of the stimulus to be conditioned from the inferior colliculus to higher brain structures such as amygdala
Resumo:
An auditory stimulus speeds up a digital response to a subsequent visual stimulus. This facilitatory effect has been related to the expectancy and the immediate arousal that would be caused by the accessory stimulus. The present study examined the relative contribution of these two influences. In a first and a third experiment a simple reaction time task was used. In a second and fourth experiment a go/no-go reaction time task was used. In each of these experiments, the accessory stimulus preceded the target stimulus by 200 ms for one group of male and female volunteers (G Fix). For another group of similar volunteers (G Var) the accessory stimulus preceded the target stimulus by 200 ms in 25% of the trials, by 1000 ms in 25% of the trials and was not followed by the target stimulus in 50% of the trials (Experiments 1a and 1b) or preceded the target stimulus by 200 ms in 6% of the trials and by 1000 ms in 94% of the trials (Experiments 2a and 2b). There was a facilitatory effect of the accessory stimulus for G Fix in the four experiments. There was also a facilitatory effect of the accessory stimulus at the 200-ms stimulus onset asynchrony for G Var in Experiments 1a and 1b but not in Experiments 2a and 2b. The facilitatory effects observed were larger in the go/no-go task than in the simple task. Taken together, these results suggest that expectancy is much more important than immediate arousal for the improvement of performance caused by an accessory stimulus.
Resumo:
The objective of this study was to investigate the phenomenon of learning generalization of a specific skill of auditory temporal processing (temporal order detection) in children with dyslexia. The frequency order discrimination task was applied to children with dyslexia and its effect after training was analyzed in the same trained task and in a different task (duration order discrimination) involving the temporal order discrimination too. During study 1, one group of subjects with dyslexia (N = 12; mean age = 10.9 ± 1.4 years) was trained and compared to a group of untrained dyslexic children (N = 28; mean age = 10.4 ± 2.1 years). In study 2, the performance of a trained dyslexic group (N = 18; mean age = 10.1 ± 2.1 years) was compared at three different times: 2 months before training, at the beginning of training, and at the end of training. Training was carried out for 2 months using a computer program responsible for training frequency ordering skill. In study 1, the trained group showed significant improvement after training only for frequency ordering task compared to the untrained group (P < 0.001). In study 2, the children showed improvement in the last interval in both frequency ordering (P < 0.001) and duration ordering (P = 0.01) tasks. These results showed differences regarding the presence of learning generalization of temporal order detection, since there was generalization of learning in only one of the studies. The presence of methodological differences between the studies, as well as the relationship between trained task and evaluated tasks, are discussed.
Resumo:
Functional MRI (fMRI) resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state’ fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs). Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent) counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal), while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.
Resumo:
Leveraging cloud services, companies and organizations can significantly improve their efficiency, as well as building novel business opportunities. Cloud computing offers various advantages to companies while having some risks for them too. Advantages offered by service providers are mostly about efficiency and reliability while risks of cloud computing are mostly about security problems. Problems with security of the cloud still demand significant attention in order to tackle the potential problems. Security problems in the cloud as security problems in any area of computing, can not be fully tackled. However creating novel and new solutions can be used by service providers to mitigate the potential threats to a large extent. Looking at the security problem from a very high perspective, there are two focus directions. Security problems that threaten service user’s security and privacy are at one side. On the other hand, security problems that threaten service provider’s security and privacy are on the other side. Both kinds of threats should mostly be detected and mitigated by service providers. Looking a bit closer to the problem, mitigating security problems that target providers can protect both service provider and the user. However, the focus of research community mostly is to provide solutions to protect cloud users. A significant research effort has been put in protecting cloud tenants against external attacks. However, attacks that are originated from elastic, on-demand and legitimate cloud resources should still be considered seriously. The cloud-based botnet or botcloud is one of the prevalent cases of cloud resource misuses. Unfortunately, some of the cloud’s essential characteristics enable criminals to form reliable and low cost botclouds in a short time. In this paper, we present a system that helps to detect distributed infected Virtual Machines (VMs) acting as elements of botclouds. Based on a set of botnet related system level symptoms, our system groups VMs. Grouping VMs helps to separate infected VMs from others and narrows down the target group under inspection. Our system takes advantages of Virtual Machine Introspection (VMI) and data mining techniques.