952 resultados para attracting fixed point
Resumo:
The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S-1 for spaces which axe fibrations over S-1 and the fiber is the torus T. For the case where the fiber is a surface with nonpositive Euler characteristic, we establish general algebraic conditions, in terms of the fundamental group and the induced homomorphism, for the existence of a deformation of a map over S-1 to a fixed point, free map. For the case where the fiber is a torus, we classify all maps over S-1 which can be deformed fiberwise to a fixed point free map.
Resumo:
Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.
Resumo:
The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S(1) for spaces which are fiber bundles over S(1) and the fiber is the Klein bottle K. We classify all such maps which can be deformed fiberwise to a fixed point free map. The similar problem for torus fiber bundles over S(1) has been solved recently.
Resumo:
Convergence to a period one fixed point is investigated for both logistic and cubic maps. For the logistic map the relaxation to the fixed point is considered near a transcritical bifurcation while for the cubic map it is near a pitchfork bifurcation. We confirmed that the convergence to the fixed point in both logistic and cubic maps for a region close to the fixed point goes exponentially fast to the fixed point and with a relaxation time described by a power law of exponent -1. At the bifurcation point, the exponent is not universal and depends on the type of the bifurcation as well as on the nonlinearity of the map.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Let T : M → M be a smooth involution on a closed smooth manifold and F = n j=0 F j the fixed point set of T, where F j denotes the union of those components of F having dimension j and thus n is the dimension of the component of F of largest dimension. In this paper we prove the following result, which characterizes a small codimension phenomenon: suppose that n ≥ 4 is even and F has one of the following forms: 1) F = F n ∪ F 3 ∪ F 2 ∪ {point}; 2) F = F n ∪ F 3 ∪ F 2 ; 3) F = F n ∪ F 3 ∪ {point}; or 4) F = F n ∪ F 3 . Also, suppose that the normal bundles of F n, F 3 and F 2 in M do not bound. If k denote the codimension of F n, then k ≤ 4. Further, we construct involutions showing that this bound is best possible in the cases 2) and 4), and in the cases 1) and 3) when n is of the form n = 4t, with t ≥ 1.
Resumo:
[EN] The purpose of this paper is to provide sufficient conditions for the existence of a unique best proximity point for Geraghty-contractions.Our paper provides an extension of a result due to Geraghty (Proc. Am. Math. Soc. 40:604-608, 1973).
Resumo:
In this paper, we are concerned with determining values of lambda, for which there exist positive solutions of the nonlinear eigenvalue problem [GRAPHICS] where a, b, c, d is an element of [0, infinity), xi(i) is an element of (0, 1), alpha(i), beta(i) is an element of [0 infinity) (for i is an element of {1, ..., m - 2}) are given constants, p, q is an element of C ([0, 1], (0, infinity)), h is an element of C ([0, 1], [0, infinity)), and f is an element of C ([0, infinity), [0, infinity)) satisfying some suitable conditions. Our proofs are based on Guo-Krasnoselskii fixed point theorem. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Здравко Д. Славов - В тази статия се разглежда математически модел на икономика с фиксирани общи ресурси, както и краен брой агенти и блага. Обсъжда се ролята на някои предположения за отношенията на предпочитание на икономическите агенти, които влияят на характеристиките на оптимално разпределените дялове. Доказва се, че множеството на оптимално разпределените дялове е свиваемо и притежава свойството на неподвижната точка.
Resumo:
2000 Mathematics Subject Classification: 54H25, 55M20.
Resumo:
This thesis deals with the problem of the instantaneous frequency (IF) estimation of sinusoidal signals. This topic plays significant role in signal processing and communications. Depending on the type of the signal, two major approaches are considered. For IF estimation of single-tone or digitally-modulated sinusoidal signals (like frequency shift keying signals) the approach of digital phase-locked loops (DPLLs) is considered, and this is Part-I of this thesis. For FM signals the approach of time-frequency analysis is considered, and this is Part-II of the thesis. In part-I we have utilized sinusoidal DPLLs with non-uniform sampling scheme as this type is widely used in communication systems. The digital tanlock loop (DTL) has introduced significant advantages over other existing DPLLs. In the last 10 years many efforts have been made to improve DTL performance. However, this loop and all of its modifications utilizes Hilbert transformer (HT) to produce a signal-independent 90-degree phase-shifted version of the input signal. Hilbert transformer can be realized approximately using a finite impulse response (FIR) digital filter. This realization introduces further complexity in the loop in addition to approximations and frequency limitations on the input signal. We have tried to avoid practical difficulties associated with the conventional tanlock scheme while keeping its advantages. A time-delay is utilized in the tanlock scheme of DTL to produce a signal-dependent phase shift. This gave rise to the time-delay digital tanlock loop (TDTL). Fixed point theorems are used to analyze the behavior of the new loop. As such TDTL combines the two major approaches in DPLLs: the non-linear approach of sinusoidal DPLL based on fixed point analysis, and the linear tanlock approach based on the arctan phase detection. TDTL preserves the main advantages of the DTL despite its reduced structure. An application of TDTL in FSK demodulation is also considered. This idea of replacing HT by a time-delay may be of interest in other signal processing systems. Hence we have analyzed and compared the behaviors of the HT and the time-delay in the presence of additive Gaussian noise. Based on the above analysis, the behavior of the first and second-order TDTLs has been analyzed in additive Gaussian noise. Since DPLLs need time for locking, they are normally not efficient in tracking the continuously changing frequencies of non-stationary signals, i.e. signals with time-varying spectra. Nonstationary signals are of importance in synthetic and real life applications. An example is the frequency-modulated (FM) signals widely used in communication systems. Part-II of this thesis is dedicated for the IF estimation of non-stationary signals. For such signals the classical spectral techniques break down, due to the time-varying nature of their spectra, and more advanced techniques should be utilized. For the purpose of instantaneous frequency estimation of non-stationary signals there are two major approaches: parametric and non-parametric. We chose the non-parametric approach which is based on time-frequency analysis. This approach is computationally less expensive and more effective in dealing with multicomponent signals, which are the main aim of this part of the thesis. A time-frequency distribution (TFD) of a signal is a two-dimensional transformation of the signal to the time-frequency domain. Multicomponent signals can be identified by multiple energy peaks in the time-frequency domain. Many real life and synthetic signals are of multicomponent nature and there is little in the literature concerning IF estimation of such signals. This is why we have concentrated on multicomponent signals in Part-H. An adaptive algorithm for IF estimation using the quadratic time-frequency distributions has been analyzed. A class of time-frequency distributions that are more suitable for this purpose has been proposed. The kernels of this class are time-only or one-dimensional, rather than the time-lag (two-dimensional) kernels. Hence this class has been named as the T -class. If the parameters of these TFDs are properly chosen, they are more efficient than the existing fixed-kernel TFDs in terms of resolution (energy concentration around the IF) and artifacts reduction. The T-distributions has been used in the IF adaptive algorithm and proved to be efficient in tracking rapidly changing frequencies. They also enables direct amplitude estimation for the components of a multicomponent
Resumo:
We present several new observations on the SMS4 block cipher, and discuss their cryptographic significance. The crucial observation is the existence of fixed points and also of simple linear relationships between the bits of the input and output words for each component of the round functions for some input words. This implies that the non-linear function T of SMS4 does not appear random and that the linear transformation provides poor diffusion. Furthermore, the branch number of the linear transformation in the key scheduling algorithm is shown to be less than optimal. The main security implication of these observations is that the round function is not always non-linear. Due to this linearity, it is possible to reduce the number of effective rounds of SMS4 by four. We also investigate the susceptibility of SMS4 to further cryptanalysis. Finally, we demonstrate a successful differential attack on a slightly modified variant of SMS4. These findings raise serious questions on the security provided by SMS4.
Resumo:
In this paper we propose a new method for face recognition using fractal codes. Fractal codes represent local contractive, affine transformations which when iteratively applied to range-domain pairs in an arbitrary initial image result in a fixed point close to a given image. The transformation parameters such as brightness offset, contrast factor, orientation and the address of the corresponding domain for each range are used directly as features in our method. Features of an unknown face image are compared with those pre-computed for images in a database. There is no need to iterate, use fractal neighbor distances or fractal dimensions for comparison in the proposed method. This method is robust to scale change, frame size change and rotations as well as to some noise, facial expressions and blur distortion in the image
Resumo:
At CRYPTO 2006, Halevi and Krawczyk proposed two randomized hash function modes and analyzed the security of digital signature algorithms based on these constructions. They showed that the security of signature schemes based on the two randomized hash function modes relies on properties similar to the second preimage resistance rather than on the collision resistance property of the hash functions. One of the randomized hash function modes was named the RMX hash function mode and was recommended for practical purposes. The National Institute of Standards and Technology (NIST), USA standardized a variant of the RMX hash function mode and published this standard in the Special Publication (SP) 800-106. In this article, we first discuss a generic online birthday existential forgery attack of Dang and Perlner on the RMX-hash-then-sign schemes. We show that a variant of this attack can be applied to forge the other randomize-hash-then-sign schemes. We point out practical limitations of the generic forgery attack on the RMX-hash-then-sign schemes. We then show that these limitations can be overcome for the RMX-hash-then-sign schemes if it is easy to find fixed points for the underlying compression functions, such as for the Davies-Meyer construction used in the popular hash functions such as MD5 designed by Rivest and the SHA family of hash functions designed by the National Security Agency (NSA), USA and published by NIST in the Federal Information Processing Standards (FIPS). We show an online birthday forgery attack on this class of signatures by using a variant of Dean’s method of finding fixed point expandable messages for hash functions based on the Davies-Meyer construction. This forgery attack is also applicable to signature schemes based on the variant of RMX standardized by NIST in SP 800-106. We discuss some important applications of our attacks and discuss their applicability on signature schemes based on hash functions with ‘built-in’ randomization. Finally, we compare our attacks on randomize-hash-then-sign schemes with the generic forgery attacks on the standard hash-based message authentication code (HMAC).
Resumo:
We study the renormalization group flows of the two terminal conductance of a superconducting junction of two Luttinger liquid wires. We compute the power laws associated with the renormalization group flow around the various fixed points of this system using the generators of the SU(4) group to generate the appropriate parametrization of an matrix representing small deviations from a given fixed point matrix [obtained earlier in S. Das, S. Rao, and A. Saha, Phys. Rev. B 77, 155418 (2008)], and we then perform a comprehensive stability analysis. In particular, for the nontrivial fixed point which has intermediate values of transmission, reflection, Andreev reflection, and crossed Andreev reflection, we show that there are eleven independent directions in which the system can be perturbed, which are relevant or irrelevant, and five directions which are marginal. We obtain power laws associated with these relevant and irrelevant perturbations. Unlike the case of the two-wire charge-conserving junction, here we show that there are power laws which are nonlinear functions of V(0) and V(2kF) [where V(k) represents the Fourier transform of the interelectron interaction potential at momentum k]. We also obtain the power law dependence of linear response conductance on voltage bias or temperature around this fixed point.