900 resultados para asymmetric coplanar strip (ACS)
Resumo:
The shape of tracheal cartilage has been widely treated as symmetric in analytical and numerical models. However, according to both histological images and in vivo medical image, tracheal cartilage is of highly asymmetric shape. Taking the cartilage as symmetric structure will induce bias in calculation of the collapse behavior, as well as compliance and muscular stress. However, this has been rarely discussed. In this paper, tracheal collapse is represented by considering its asymmetric shape. For comparison, the symmetric shape, which is reconstructed by half of the cartilage, is also presented. A comparison of cross-sectional area, compliance of airway and stress in the muscular membrane, determined by asymmetric shape and symmetric shape is made. The result indicates that the symmetric assumption brings a small error, around 5% in predicting the cross-sectional area under loading conditions. The relative error of compliance is more than 10%. Particularly when the pressure is close to zero, the error could be more than 50%. The model considering the symmetric shape results in a significant difference in predicting stress in muscular membrane by either under- or over-estimating it. In conclusion, tracheal cartilage should not be treated as a symmetric structure. The results obtained in this study are helpful in evaluating the error induced by the assumption in geometry.
Resumo:
The finite element method is used to analyse stresses and displacements in a monoblock cylinder open at one end only. The cylinder is internally pressurised. The analysis shows that the minimum pressure required to cause yield in the cylinder decreases rapidly with increasing cylinder height until the height is about the same as the outer radius of the cylinder, beyond which the decrease is marginal. Introduction of a fillet at the internal corner enhances the design pressure substantially while a fillet at the outer corner affects this pressure only marginally.
Resumo:
1. The electric field strength between coplanar electrodes is calculated employing "conformal transformations." The electron multiplication factor is then computed in the nonuniform field region. These calculations have been made for different gap lengths, voltages, and also for different gases and gas pressures. The configuration results in a curved discharge path. It is found that the electron multiplication is maximum along a particular flux line and the prebreakdown discharge is expected to follow this flux line. Experimental tubes incorporating several coplanar gaps have been fabricated. Breakdown voltages have been measured for various discharge gaps and also for various gases such as xenon, helium, neon, argon, and neon-argon mixture (99.5:0.5) at different filling pressures. The variation of breakdown voltage with pressure and gap length is discussed. The observed discharge paths are curved and this is in agreement with theoretical results. A few experimental single-digit coplanar gas-discharge displays (CGDD's) with digit height of 5 cm have been fabricated and dependence of their characteristics on various parameters, including spacing between top glass plate and bottom substrate, have been studied.
Resumo:
The heat and mass transfer for unsteady laminar compressible boundary-layer flow, which is asymmetric with respect to a 3-dimensional stagnation point (i.e. for a jet incident at an angle on the body), have been studied. It is assumed that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time and also that the gas has variable properties. The solution in the neighbourhood of the stagnation point has been obtained by series expansion in the longitudinal distance. The resulting partial differential equations have been solved numerically using an implicit finite-difference scheme. The results show that, in contrast with the symmetric flow, the maximum heat transfer does not occur at the stagnation point. The skin-friction and heat-transfer components due to asymmetric flow are only weakly affected by the mass transfer as compared to those components associated with symmetric flow. The variation of the wall temperature with time has a strong effect on the heat transfer component associated with the symmetric part of the flow. The skin friction and heat transfer are strongly affected by the variation of the density-viscosity product across the boundary layer. The skin friction responds more to the fluctuations of the free stream oscillating velocities than the heat transfer. The results have been compared with the available results and they are found to be in excellent agreement.
Resumo:
We describe how an ion-exchange waveguide was used as a strip-loading region for a planar polymer waveguide. The loading strip forms an underlay that is well preserved in the substrate. Some branching-channel waveguides were formed by this method, and wall losses were measured. The result shows that the wall losses decrease as a result of strip loading.
Resumo:
The relationship between the parameters in a description based on a mesoscale free energy functional for the concentration field and the macroscopic properties, such as the bending and compression moduli and the permeation constant, are examined for an asymmetric lamellar phase where the mass fractions of the hydrophobic and hydrophilic parts are not equal. The difference in the mass fractions is incorporated using a cubic term in the free energy functional, in addition to the usual quadratic and quartic terms in the Landau–Ginsburg formulation. The relationship between the coefficient of the cubic term and the difference in the mass fractions of the hydrophilic and hydrophobic parts is obtained. For a lamellar phase, it is important to ensure that the surface tension is zero due to symmetry considerations. The relationship between the parameters in the free energy functional for zero surface tension is derived. When the interface between the hydrophilic and hydrophobic parts is diffuse, it is found that the bending and compression moduli, scaled by the parameters in the free energy functional, do increase as the asymmetry in the bilayer increases. When the interface between the hydrophilic and hydrophobic parts is sharp, the scaled bending and compression moduli show no dependence on the asymmetry in the bilayer. The ratio of the permeation constant in between the water and bilayer in a molecular description and the Onsager coefficient in the mesoscale description is O(1) for both sharp and diffuse interfaces and it increases as the difference in the mass fractions is increased.
Resumo:
The octameric nucleosomal core-histone complex, (H2A)2-(H2B)2-(H3)2-(H4)2, isolated from rat liver, undergoes dissociation during gel exclusion chromatography as a result of dilution occurring in the columns. The elution pattern at pH 7.0 and 4°C showed a sharp leading peak containing all four histones but predominantly H3 and H4, and a trailing peak containing equal amounts of histones H2A and H2B. As column length was increased the area under the leading peak decreased and that under the trailing peak increased. In addition the relative positions of the two peaks varied with column length. From an analysis of the data on increase in elution volume of the leading peak in relation to column length an apparent molecular weight of 86 000 was calculated for the undissociated molecule. Its apparent molecular weight, histone composition and pattern of further dissociation in relation to column length suggest that this species is the hexamer, (H2A-H2B)-(H3)2-(H4)2. At pH 7.0 and 4°C the dissociation of the core complex appears to be as follows: (H2A)2-(H2B)2-(H3)2-(H4)2 → (H2A-H2B) + (H2A-H2B)-(H3)2-(H4)2 → 2(H2A-H2B) + (H3)2-(H4)2 This dissociation was accelerated by an increase in temperature or decrease in pH and was accompanied by marked conformational changes as judged by circular dichroism measurements.
Resumo:
We consider the asymmetric distributed source coding problem, where the recipient interactively communicates with N correlated informants to gather their data. We are mainly interested in minimizing the worst-case number of informant bits required for successful data-gathering at recipient, but we are also concerned with minimizing the number of rounds as well as the number of recipient bits. We provide two algorithms, one that optimally minimizes the number of informant bits and other that trades-off the number of informant bits to efficiently reduce the number of rounds and number of recipient bits.
Resumo:
Synthetically useful N-Fmoc amino-alkyl isothiocyanates have been described, starting from protected amino acids. These compounds have been synthesized in excellent yields by thiocarbonylation of the monoprotected 1,2-diamines with CS2/TEA/p-TsCl, isolated as stable solids, and completely characterized. The procedure has been extended to the synthesis of amino alkyl isothiocyanates from Boc- and Z-protected amino acids as well. The utility of these isothiocyanates for peptidomimetics synthesis has been demonstrated by employing them in the preparation of a series of dithioureidopeptide esters. Boc-Gly-OH and Boc-Phe-OH derived isothiocyanates 9a and 9c have been obtained as single crystals and their structures solved through X-ray diffraction. They belong to the orthorhombic crystal system, and have a single molecule in the asymmetric unit (Z′ = 1). 9a crystallizes in the centrosymmetric space group Pbca, while 9c crystallizes in the noncentrosymmetric space group P212121.
Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis
Resumo:
Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8% ± 1.1% sensitivity and 98.4% ± 0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with Bsplines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained.
Resumo:
Asymmetric rolling of commercially pure magnesium was carried out at three different temperatures: room temperature, 200 degrees C and 350 degrees C. Systematic analysis of microstructures, grain size distributions, texture and misorientation distributions were performed using electron backscattered diffraction in a field emission gun scanning electron microscope. The results were compared with conventional (symmetric) rolling carried out under the same conditions of temperature and strain rate. Simulations of deformation texture evolution were performed using the viscoplastic self-consistent polycrystal plasticity model. The main trends of texture evolution are faithfully reproduced by the simulations for the tests at room temperature. The deviations that appear for the textures obtained at high temperature can be explained by the occurrence of dynamic recrystallization. Finally, the mechanisms of texture evolution in magnesium during asymmetric and symmetric rolling are explained with the help of ideal orientations, grain velocity fields and divergence maps displayed in orientation space.
Resumo:
The unsteady laminar incompressible boundary-layer flow near the three-dimensional asymmetric stagnation point has been studied under the assumptions that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. It is found that in contrast with the symmetric flow, the maximum heat transfer occurs away from the stagnation point due to the decrease in the boundary-layer thickness. The effect of the variation of the wall temperature with time on heat transfer is strong. The skin friction and heat transfer due to asymmetric flow only are comparatively less affected by the mass transfer as compared to those of symmetric flow.
Resumo:
A series of new chiral palladium-bisphosphinite complexes have been prepared from readily available, naturally occurring chiral alcohols. The complexes were used to efficiently carry out catalytic allylic alkylation of 1,3-diphenylpropene-2-yl acetate with dimethyl malonate. The complexes based on derivatives of ascorbic acid carry out enantioselective alkylations, one of which showed an ee as high as 97%. Based on the structural characterization, it can be surmised that strategic placement of phenyl groups is key to higher enantioselectivities.