982 resultados para astrofisica delle particelle, materia oscura, xenon
Resumo:
L’oggetto di questo elaborato riguarda lo studio prestazionale di un Solid Rocket Motor mediante l’introduzione del fattore di “Hump”, che va a compensare il discostamento tra il profilo delle pressioni sperimentali e teoriche, cercando di legare tali variazioni a spiegazioni fisiche. In particolare andremo ad investigare, all’interno di due differenti tipologie di colata, quale sia l’effetto predominante all’interno del propellente che genera proprio tali discostamenti della pressione, e quindi della spinta, rispetto alla condizione ideale. Nell’elaborato verranno anzitutto presentate le diverse tipologie di propulsori, i loro singoli componenti, i parametri fondamentali che regolano la meccanica di questa tipologia di motori, le tipologie di grain esistenti e le loro caratteristiche. Successivamente descriveremo le BARIA (Bomb ARIAne), usate per i test del grain nella ditta AVIO s.p.a., e le tipologie di riempimento di questo motore, investigando i fenomeni fisici a cui sarà legato l’effetto di “Hump”. In seguito si descriverà il fattore di “Hump”, evidenziando, per le differenti tipologie di riempimento, i fenomeni fisici a cui sarà legato il discostamento tra le pressioni sperimentali e teoriche. Verranno poi descritti i programmi utilizzati, gli script in Matlab prodotti, al fine di ottenere le mappe relative all’orientazione ed alla concentrazione delle particelle, da introdurre nel simulatore. Infine verranno esposti i risultati ottenuti e confrontati con i dati sperimentali forniti dalla ditta AVIO s.p.a., le conclusioni e gli sviluppi futuri.
Resumo:
Lo scopo della tesi è di stimare le prestazioni del rivelatore ALICE nella rivelazione del barione Lambda_c nelle collisioni PbPb usando un approccio innovativo per l'identificazione delle particelle. L'idea principale del nuovo approccio è di sostituire l'usuale selezione della particella, basata su tagli applicati ai segnali del rivelatore, con una selezione che usi le probabilità derivate dal teorema di Bayes (per questo è chiamato "pesato Bayesiano"). Per stabilire quale metodo è il più efficiente , viene presentato un confronto con altri approcci standard utilizzati in ALICE. Per fare ciò è stato implementato un software di simulazione Monte Carlo "fast", settato con le abbondanze di particelle che ci si aspetta nel nuovo regime energetico di LHC e con le prestazioni osservate del rivelatore. E' stata quindi ricavata una stima realistica della produzione di Lambda_c, combinando i risultati noti da esperimenti precedenti e ciò è stato usato per stimare la significatività secondo la statistica al RUN2 e RUN3 dell'LHC. Verranno descritti la fisica di ALICE, tra cui modello standard, cromodinamica quantistica e quark gluon plasma. Poi si passerà ad analizzare alcuni risultati sperimentali recenti (RHIC e LHC). Verrà descritto il funzionamento di ALICE e delle sue componenti e infine si passerà all'analisi dei risultati ottenuti. Questi ultimi hanno mostrato che il metodo risulta avere una efficienza superiore a quella degli usuali approcci in ALICE e che, conseguentemente, per quantificare ancora meglio le prestazioni del nuovo metodo si dovrebbe eseguire una simulazione "full", così da verificare i risultati ottenuti in uno scenario totalmente realistico.
Resumo:
La presentazione oltre a illustrare le attività progettuali del Dipartimento di Ingegneria, ICT e Tecnologie per l'Energia e i Trasporti (DIITET) del Consiglio Nazionale delle Ricerche (CNR) nell'ambito delle Smart Cities, spiega che cos'è una città intelligente/sostenibile, i livelli su cui opera, perchè è importante. Si evidenziano tre esempi progettuali concreti testati anche con i cittadini su tre città italiante: Siracusa, Pisa e Bologna.
Resumo:
L’obbiettivo di questa tesi è quello di analizzare le conseguenze della scelta del frame (Jordan o Einstein) nel calcolo delle proprietà degli spettri primordiali generati dall’inflazione ed in particolare dell’osservabile r (rapporto tensore su scalare) al variare del potenziale del campo che genera l’espansione accelerata. Partendo dalla descrizione della teoria dell’inflazione in relatività generale, focalizzando l’attenzione sui motivi che hanno portato all’introduzione di questa teoria, vengono presentate le tecniche di utilizzo comune per lo studio della dinamica omogenea (classica) inflazionaria e di quella disomogenea (quantistica). Una particolare attenzione viene rivolta ai metodi di approssimazione che è necessario adottare per estrarre predizioni analitiche dai modelli inflazionari per poi confrontarle con le osservazioni. Le tecniche introdotte vengono poi applicate ai modelli di inflazione con gravità indotta, ovvero ad una famiglia di modelli con accoppiamento non minimale tra il campo scalare inflatonico e il settore gravitazionale. Si porrà attenzione alle differenze rispetto ai modelli con accoppiamento minimale, e verrà studiata la dinamica in presenza di alcuni potenziali derivanti dalla teoria delle particelle e diffusi in letteratura. Il concetto di “transizione tra il frame di Jordan e il frame di Einstein” viene illustrato e le sue conseguenze nel calcolo approssimato del rapporto tensore su scalare sono discusse. Infine gli schemi di approssimazione proposti vengono analizzati numericamente. Risulterà che per due dei tre potenziali presentati i metodi di approssimazione sono più accurati nel frame di Einstein, mentre per il terzo potenziale i due frames portano a risultati analitici similmente accurati.
Resumo:
Il Modello Standard delle particelle elementari prevede l’universalità del sapore leptonico, cioè l’uguaglianza della probabilità di accoppiamento dei bosoni di gauge carichi dell’interazione debole con tutti i leptoni. Recentemente, le Collaborazioni LHCb, BaBar e Belle, misurando il rapporto tra i branching ratio dei decadimenti $B^0\to D^{∗− }\tau^+\nu_{\tau} e $B^0 →D^{∗−}\mu^+\nu_{\mu}, hanno osservato una deviazione dai valori previsti dal Modello Standard di 3.9 deviazioni standard. Questo interessante risultato, se confermato, indicherebbe l’esistenza di nuove particelle, come per esempio il bosone di Higgs carico. Analogamente ai decadimenti del mesone $B^0$ , è possibile cercare effetti analoghi anche nel rapporto di branching ratio dei decadimenti $D^0\to K^ −\mu^+\nu_{\mu}$ e $D^0\to K^−e^+\nu_e$ . In questo lavoro di tesi è stato realizzato uno studio preliminare di questa misura. In particolare, è stato studiata, tramite simulazioni Monte Carlo, la ricostruzione del processo $D^{*\pm}\to D^0 (\to K^− \mu+\nu_{\mu})\pi_s^{\pm}$ nell’esperimento LHCb. Questo canale ha la particolarità di avere una particella invisibile, il neutrino, al rivelatore LHCb. Tuttavia, mediante vincoli cinematici e topologici, è possibile ricavare le componenti dell’impulso del neutrino, con risoluzioni non paragonabili a quelle di una particella visibile, ma comunque accettabili. In questa tesi sono riportati i calcoli che permettono di ottenere queste informazioni ed è stata studiata la risoluzione sulla massa invariante del $D^{∗\pm}$ . La tesi è organizzata nel seguente modo: il primo capitolo riporta le motivazioni della misura dei rapporti dei branching ratio e l’attuale stato sperimentale; il secondo capitolo contiene una breve descrizione del rivelatore LHCb; il terzo capitolo, infine, descrive lo studio di fattibilità della ricostruzione del decadimento $D^0\to K^-\mu^+\nu_{\mu}.
Resumo:
Una stella non è un sistema in "vero" equilibrio termodinamico: perde costantemente energia, non ha una composizione chimica costante nel tempo e non ha nemmeno una temperatura uniforme. Ma, in realtà, i processi atomici e sub-atomici avvengono in tempi così brevi, rispetto ai tempi caratteristici dell'evoluzione stellare, da potersi considerare sempre in equilibrio. Le reazioni termonucleari, invece, avvengono su tempi scala molto lunghi, confrontabili persino con i tempi di evoluzione stellare. Inoltre il gradiente di temperatura è dell'ordine di 1e-4 K/cm e il libero cammino medio di un fotone è circa di 1 cm, il che ci permette di assumere che ogni strato della stella sia uno strato adiabatico a temperatura uniforme. Di conseguenza lo stato della materia negli interni stellari è in una condizione di ``quasi'' equilibrio termodinamico, cosa che ci permette di descrivere la materia attraverso le leggi della Meccanica Statistica. In particolare lo stato dei fotoni è descritto dalla Statistica di Bose-Einstein, la quale conduce alla Legge di Planck; lo stato del gas di ioni ed elettroni non degeneri è descritto dalla Statistica di Maxwell-Boltzmann; e, nel caso di degenerazione, lo stato degli elettroni è descritto dalla Statistica di Fermi-Dirac. Nella forma più generale, l'equazione di stato dipende dalla somma dei contributi appena citati (radiazione, gas e degenerazione). Vedremo prima questi contributi singolarmente, e dopo li confronteremo tra loro, ottenendo delle relazioni che permettono di determinare quale legge descrive lo stato fisico di un plasma stellare, semplicemente conoscendone temperatura e densità. Rappresentando queste condizioni su un piano $\log \rho \-- \log T$ possiamo descrivere lo stato del nucleo stellare come un punto, e vedere in che stato è la materia al suo interno, a seconda della zona del piano in cui ricade. È anche possibile seguire tutta l'evoluzione della stella tracciando una linea che mostra come cambia lo stato della materia nucleare nelle diverse fasi evolutive. Infine vedremo come leggi quantistiche che operano su scala atomica e sub-atomica siano in grado di influenzare l'evoluzione di sistemi enormi come quelli stellari: infatti la degenerazione elettronica conduce ad una massa limite per oggetti completamente degeneri (in particolare per le nane bianche) detta Massa di Chandrasekhar.
Resumo:
Come si evince dal titolo della tesi, la ricerca effettuata dal presente candidato nel corso del dottorato di ricerca ha avuto ad oggetto l’analisi delle competenze che, a diverso livello, comunitario, nazionale e regionale, sono attribuite agli enti in materia di rilascio di concessioni di servizi in abito interportuale, portuale e demaniale marittimo. L’attenzione, pertanto, ha dovuto innanzitutto essere rivolta ai compiti ed alle facoltà che, in forza del trattato che istituisce la Comunità Europea, sono attribuite alla Comunità stessa. Si è provveduto, pertanto, ad analizzare l’evoluzione della normativa per giungere all’attuale sistema giuridico. Gli aspetti della disciplina delle concessioni, oggetto di ricerca, hanno dovuto ripercorrere i vari procedimenti di infrazione comminati dalla Corte Europea, per i quali il sistema giuridico nazionale si è dovuto adattare con non poche difficoltà, soprattutto per la presenza di posizioni e prassi, negli anni, divenute consolidate.
Resumo:
Prima di fornire una formulazione esaustiva dell'onda d'urto, è d'uopo definire il gas come oggetto fisico e le sue principali caratteristiche. Quanto si farà nei paragrafi seguenti quindi, sarà tentare di formalizzare il sistema gassoso dal punto di vista fisico e matematico. Sarà necessario introdurre un modello del sistema (par. 1.1) che ci permetta di lavorare a livello statistico sull'insieme di particelle che lo compongono per caratterizzare le funzioni termodinamiche classiche come medie temporali. Tramite queste considerazioni si stabilirà quali sono le quantità che si conservano nel moto di un fluido e si vedrà che tali leggi di conservazione formano un sistema di 5 equazioni differenziali parziali in 6 incognite. Tramite la linearizzazione di questo sistema si individueranno delle soluzioni chiamate onde sonore che danno un'indicazione sul modo in cui si propagano delle perturbazioni all'interno di un fluido; in particolar modo saranno utili per la determinazione del numero di Mach che rende possibile la distinzione tra due regimi: subsonico e supersonico (par. 1.2). Sarà possibile, a questo punto, indagare il fenomeno dell'onda d'urto (par. 2.1) e, nel dettaglio, due casi particolarmente utili in contesto astrofisico quali: l'onda d'urto per un gas politropico (par. 2.2), un'onda d'urto sferica che avanza verso il suo centro (2.2). Lo scopo di questa trattazione è indagare, o se non altro tentare, quanto avviene in un'esplosione di Supernova (par. 3). Relativamente a questo fenomeno, ne viene data una classificazione sommaria (par. 3.1), mentre particolare attenzione sarà rivolta alle Supernovae di tipo Ia (par. 3.2) che grazie alla loro luminosità standard costituiscono un punto di riferimento nell'Universo visibile.
Resumo:
La misura delle distanze in astrofisica non è affatto semplice, ma è molto importante per capire le dimensioni dell'Universo e le caratteristiche dei corpi celesti. Inoltre per descrivere le enormi distanze astronomiche sono state introdotte delle apposite unità di misura, quali l'Unità Astronomica, l'anno luce e il parsec. Esistono vari modi per calcolare le distanze: i metodi geometrici, basati sulla parallasse; gli indicatori primari, utilizzano le cosiddette candele standard, cioè oggetti di cui è nota la magnitudine assoluta, per calcolare le distanze di galassie vicine, e sono calibrati sulle misure dei metodi geometrici; gli indicatori secondari, utilizzano gli indicatori primari come calibri per poter calcolare le distanze di galassie ed ammassi di galassie lontani. Quindi le distanze si calcolano attraverso una serie di passaggi successivi, creando così una vera e propria scala, in cui ogni gradino corrisponde ad un metodo che viene calibrato sul precedente. Con i metodi geometrici da Terra sono state misurate distanze fino a poche centinaia di parsec, con il satellite Ipparcos si è arrivati ai Kiloparsec e col satellite Gaia saranno note le distanze di tutte le stelle della galassia. Con gli indicatori primari è stato possibile calcolare le distanze delle galassie vicine e con quelli secondari le distanze di galassie ed ammassi lontani, potendo così stimare con la Legge di Hubble le dimensioni dell'Universo. In questo elaborato verranno analizzati diversi metodi: i vari tipi di parallasse (quella annua e di ammasso in particolare), il fit di sequenza principale per gli ammassi stellari, le stelle variabili (Cefeidi classiche, W Virginis, RR Lyrae), le Supernovae di tipo Ia, la relazione di Tully-Fisher, il Piano Fondamentale e la Legge di Hubble.
Resumo:
In questo elaborato vengono descritti i principali metodi per il calcolo delle distanze in astrofisica. Viene trattato il fenomeno della parallasse, il funzionamento e alcuni tipi di stelle variabili oltre alle supernove di tipo thermonuclear. Infine sono brevemente discussi alcuni indicatori secondari: le relazioni di Faber-Jackson, Tully-Fisher e la legge di Hubble.
Resumo:
At head of title: G. Maruffi.
Resumo:
L’intento dell’elaborato è quello di ricavare i limiti teorici ai quali è soggetta l’intensità del campo magnetico delle pulsar. Troveremo due relazioni: una che esprime il valore massimo dell’intensità del campo magnetico per una pulsar, e una che ne esprime il valore minimo. Combineremo infine i nostri due risultati in una disequazione, nella quale l'intensità del campo magnetico di una pulsar è minorata e maggiorata dai due termini trovati. Il valore massimo che può assumere l’intensità del campo magnetico di una pulsar verrà derivato dalla condizione di stabilità espressa dal teorema del viriale per un sistema sferico rotante in presenza di un campo magnetico. Enunceremo inizialmente il teorema del viriale nella sua forma generale, dopodiché ne presenteremo l'espressione in un caso statico in presenza di un campo magnetico. Abbandoneremo poi il caso statico per includere l'effetto della rotazione, non trascurabile nel caso delle pulsar. Dopo aver adattato la condizione di stabilità derivante dal teorema del viriale al nostro modello di pulsar, ricaveremo il valore massimo dell'intensità del campo magnetico. Il valore minimo che può assumere l’intensità del campo magnetico di una pulsar verrà ricavato uguagliando la potenza emessa dalla pulsar mentre ruota (approssimata ad un dipolo rotante) con la perdita di energia rotazionale che si osserva normalmente per questi oggetti. Otterremo alla fine due termini che delimitano i valori che può assumere l’intensità del campo magnetico per una pulsar. Sostituendo alla relazione trovata i valori di raggio e massa tipici per una pulsar, saremo in grado di riscrivere tale relazione unicamente in funzione del periodo di rotazione della pulsar e della sua derivata rispetto al tempo. Sostituiremo i valori di periodo e derivata temporale del periodo di una pulsar esistente per avere un’idea del range di valori sotteso dai due termini trovati.
Resumo:
[es] En este trabajo se ha estudiado el modelo cosmológico LambdaCDM considerando el universo plano, compuesto por materia que no ejerce presión y por constante cosmol ogica. El proyecto comienza con una breve introducción a la cosmología, seguido de una explicación concisa del conocimiento actual de la expansi on acelerada del universo. El objetivo principal del trabajo reside en comparar este modelo con otro en el que la energía oscura no es la constante cosmológica e imponer restricciones en los parámetros que describen los modelos, para lo cual se han utilizado datos provenientes de brotes de rayos gamma.