987 resultados para assemblage structure
Resumo:
Despite their sensitivity to climate variability, few of the abundant sinkhole lakes of Florida have been the subject of paleolimnological studies to discern patterns of change in aquatic communities and link them to climate drivers. However, deep sinkhole lakes can contain highly resolved paleolimnological records that can be used to track long-term climate variability and its interaction with effects of land-use change. In order to understand how limnological changes were regulated by regional climate variability and further modified by local land-use change in south Florida, we explored diatom assemblage variability over centennial and semi-decadal time scales in an ~11,000-yr and a ~150-yr sediment core extracted from a 21-m deep sinkhole lake, Lake Annie, on the protected property of Archbold Biological Station. We linked variance in diatom assemblage structure to changes in water total phosphorus, color, and pH using diatom-based transfer functions. Reconstructions suggest the sinkhole depression contained a small, acidic, oligotrophic pond ~11000–7000 cal yr BP that gradually deepened to form a humic lake by ~4000 cal yr BP, coinciding with the onset of modern precipitation regimes and the stabilization of sea-level indicated by corresponding palynological records. The lake then contained stable, acidophilous planktonic and benthic algal communities for several thousand years. In the early AD 1900s, that community shifted to one diagnostic of an even lower pH (~5.6), likely resulting from acid precipitation. Further transitions over the past 25 yr reflect recovery from acidification and intensified sensitivity to climate variability caused by enhanced watershed runoff from small drainage ditches dug during the mid-twentieth Century on the surrounding property.
Resumo:
Successfully rehabilitating drained wetlands through hydrologic restoration is dependent on defining restoration targets, a process that is informed by pre-drainage conditions, as well as understanding linkages between hydrology and ecosystem structure. Paleoecological records can inform restoration goals by revealing long-term patterns of change, but are dependent on preservation of biomarkers that provide meaningful interpretations of environmental change. In the Florida Everglades, paleohydrological hind-casting could improve restoration forecasting, but frequent drying of marsh soils leads to poor preservation of many biomarkers. To determine the effectiveness of employing siliceous subfossils in paleohydrological reconstructions, we examined diatoms, plant and sponge silico-sclerids from three soil cores in the central Everglades marshes. Subfossil quality varied among cores, but the abundance of recognizable specimens was sufficient to infer 1,000–3,000 years of hydrologic change at decadal to centennial resolution. Phytolith morphotypes were linked to key marsh plant species to indirectly measure fluctuations in water depth. A modern dataset was used to derive diatom-based inferences of water depth and hydroperiod (R2 = 0.63, 0.47; RMSE = 14 cm, 120 days, respectively). Changes in subfossil quality and abundances at centennial time-scales were associated with mid-Holocene climate events including the Little Ice Age and Medieval Warm Period, while decadal-scale fluctuations in assemblage structure during the twentieth century suggested co-regulation of hydrology by cyclical climate drivers (particularly the Atlantic Multidecadal Oscillation) and water management changes. The successful reconstructions based on siliceous subfossils shown here at a coarse temporal scale (i.e., decadal to centennial) advocate for their application in more highly resolved (i.e., subdecadal) records, which should improve the ability of water managers to target the quantity and variability of water flows appropriate for hydrologic restoration.
Resumo:
Coastal ecosystems around the world are constantly changing in response to interacting shifts in climate and land and water use by expanding human populations. The development of agricultural and urban areas in South Florida significantly modified its hydrologic regime and influenced rates of environmental change in wetlands and adjacent estuaries. This study describes changes in diatom species composition through time from four sediment cores collected across Florida Bay, for the purposes of detecting periods of major shifts in assemblage structure and identifying major drivers of those changes. We examined the magnitude of diatom assemblage change in consecutive 2-cm samples of the 210Pb-dated cores, producing a record of the past ~130 years. Average assemblage dissimilarity among successive core samples was ~30%, while larger inter-sample and persistent differences suggest perturbations or directional shifts. The earliest significant compositional changes occurred in the late 1800s at Russell Bank, Bob Allen Bank and Ninemile Bank in the central and southwestern Bay, and in the early 1900s at Trout Cove in the northeast. These changes coincided with the initial westward redirection of water from Lake Okeechobee between 1881 and 1894, construction of several canals between 1910 and 1915, and building the Florida Overseas Railroad between 1906 and 1916. Later significant assemblage restructurings occurred in the northeastern and central Bay in the late 1950s, early 1960s and early 1970s, and in the southwestern Bay in the 1980s. These changes coincide with climate cycles driving increased hurricane frequency in the 1960s, followed by a prolonged dry period in the 1970s to late 1980s that exacerbated the effects of drainage operations in the Everglades interior. Changes in the diatom assemblage structure at Trout Cove and Ninemile Bank in the 1980s correspond to documented eutrophication and a large seagrass die-off. A gradual decrease in the abundance of freshwater to brackish water taxa in the cores over ~130 years implies that freshwater deliveries to Florida Bay were much greater prior to major developments on the mainland. Salinity, which was quantitatively reconstructed at these sites, had the greatest effect on diatom communities in Florida Bay, but other factors—often short-lived, natural and anthropogenic in nature—also played important roles in that process. Studying the changes in subfossil diatom communities over time revealed important environmental information that would have been undetected if reconstructing only one water quality variable.
Resumo:
Despite the importance of tropical montane cloud forest streams, studies investigating aquatic communities in these regions are rare and knowledge on the driving factors of community structure is missing. The objectives of this study therefore were to understand how land-use influences habitat structure and macroinvertebrate communities in cloud forest streams of southern Ecuador. We evaluated these relationships in headwater streams with variable land cover, using multivariate statistics to identify relationships between key habitat variables and assemblage structure, and to resolve differences in composition among sites. Results show that shading intensity, substrate type and pH were the environmental parameters most closely related to variation in community composition observed among sites. In addition, macroinvertebrate density and partly diversity was lower in forested sites, possibly because the pH in forested streams lowered to almost 5 during spates. Standard bioindicator metrics were unable to detect the changes in assemblage structure between disturbed and forested streams. In general, our results indicate that tropical montane headwater streams are complex and heterogeneous ecosystems with low invertebrate densities. We also found that some amount of disturbance, i.e. patchy deforestation, can lead at least initially to an increase in macroinvertebrate taxa richness of these streams.
Resumo:
Invasive species can impact native species and alter assemblage structure, which affects associated ecosystem functioning. The pervasive Pacific oyster, Crassostrea gigas, has been shown to affect the diversity and composition of many host ecosystems. We tested for effects of the presence of the invasive C. gigas on native assemblages by comparing them directly to assemblages associated with the declining native European oyster, Ostrea edulis. The presence of both oyster species was manipulated in intertidal and subtidal habitats and reefs were constructed at horizontal and vertical orientation to the substratum. After 12 months, species diversity and benthic assemblage structure between assemblages with C. gigas and O. edulis were similar, but differed between habitats and orientation, suggesting that both oyster species were functionally similar in terms of biodiversity facilitation. These findings support evidence, that non-native species could play an important role in maintaining biodiversity in systems with declining populations of native species.
Resumo:
Knowledge of how biota can be used to monitor ecosystem health and assess impacts by human alterations such as land use and management measures taken at different spatial scales is critical for improving the ecological quality of aquatic ecosystems. This knowledge in Uganda is very limited or unavailable yet it is needed to better understand the relationship between environmental factors at different spatial scales, assemblage structure and taxon richness of aquatic ecosystems. In this study, benthic invertebrate community patterns were sampled between June 2001 and April 2002 and analysed in relation to water quality and catchment land use patterns from three shallow near-shore bays characterized by three major land uses patterns: urban (Murchison Bay); semi-urban (Fielding Bay); rural (Hannington Bay). Variations in density and guild composition of benthic macro-invertebrates communities were evaluated using GIS techniques along an urban-rural gradient of land use and differences in community composition were related to dissolved oxygen and conductivity variation. Based on numerical abundance and tolerance values, Hilsenhoff's Biotic Index ofthe invertebrates was determined in order to evaluate the relative importance of water quality in the three bays. Murchison Bay supported a relatively taxa-poor invertebrate assemblage mainly comprising stenotopic and eurytopic populations of pollution-tolerant groups such as worms and Chironomus sp. with an overall depression in species diversity. On the contrary, the communities in Fielding and Hannington bays were quite similar and supported distinct and diverse assemblages including pollution-intolerant forms such as Ephemeroptera (mayflies), Odonata (dragonflies). The Hilsenhoff Biotic Index in Murchison Bay was 6.53. (indicating poor water quality) compared to 6.34 for Fielding Bay and 5.78 for Hannington Bay (both indicating fair water quality). The characterization of maximum taxa richness balanced among taxa groups with good representation of intolerant individuals in Hannington Bay relative to Fielding and Murchison bays concludes that the bay is the cleanest in terms of water quality. Contrary, the dominance of few taxa with many tolerant iqdividuals present in Murchison Bay indicates that the bay is degraded in terms of water quality. These result are ofimportance when planning conservation and management measures, implementing large-scale biomonitoring programs, and predicting how human alterations (e.g nutrient loading) affect water ecosystems. Therefore, analysis of water quality in relation to macro-invertebrate community composition patterns as bio-indicators can lead to further understanding of their responses to environmental manipulations and perturbations.
Resumo:
Fish assemblages in seagrass and unvegetated habitats located in shallow intertidal creeks within the saltmarsh area of the Ria Formosa coastal lagoon were sampled with a Riley push net at 3 sites on a monthly basis over a 1 yr period. The objective was to test if both habitats support similar fish assemblages in terms of abundance, diversity, assemblage structure, and size distribution, and to investigate how site and season affect the assemblages. Fish assemblages associated with these habitats were significantly different in terms of diversity, abundance, and assemblage structure. Seagrass supported a larger number of species and greater diversity, while unvegetated habitat supported greater fish numbers but only of a few species. The habitats were dominated by different groups of resident species that were responsible for major differences in fish assemblage structure between habitats. Pomatoschistus microps and young-of-the-year (YOY) Atherina presbyter dominated the unvegetated habitat, while seagrass was dominated by a diverse group of species, in particular syngnathids and small labrids, revealing different habitat preferences. Site and season were determinant factors conditioning the role of habitat in structuring fish assemblages. Distance between habitats, site elevation, and the amount of marsh drained affected fish assemblages in both habitats. Seasonal fluctuations in the presence and abundance of YOY from marine migrant and resident species were responsible for comparable changes in fish assemblage structure in both habitats. Both habitats provide a distinctive nursery area for different species, while common species reveal ontogenic distributional changes between habitats, where smaller fish appear first in unvegetated creeks.
Resumo:
Changes in fish assemblage structure caused by human activities, such as fishing, can alter trophic relations in fish assemblages. In this context, Marine Protected Areas (MPA) are efficient tools for habitat recovery and ideal environments for evaluating changes on the trophic structure resulting from human activities. The present work targeted fish assemblages from two no-take MPAs from the northern half of South Alentejo and Costa Vicentina Marine Park, established in 2011. Previous works reported positive effects on local fish assemblages after no-take MPA designation, and it is therefore important to further study its impact on local fish assemblages, especially concerning trophic interactions. Local fish assemblages were sampled (summer 2011, winter 2012, summer 2013 and winter 2013) using trammel nets. Diets were characterized and digestive tract contents of the 10 most abundant fish species were compared between the no take MPAs (treatment) and adjacent areas (controls), and changes evaluated as a function of time since protection. Results revealed significant differences between the diets of fish from protected and non protected areas, with crabs being the preferential prey in both protected and control areas but being more ingested outside the no-take areas. However, these differences were evident since the beginning of the study. Fish assemblages from the northern area presented significantly larger niche breadth and significantly increasing with time. This way, the main effects of no-take MPA implementation were directly visible on the niche breadth but did not directly impact the diet composition of the sampled fish assemblages, contributing however to reinforce the already naturally existent differences. This work provides important information regarding the effect of changes in the fish assemblage caused by MPA designation on the trophic ecology of fish.
Resumo:
A two-year study was carried out to evaluate the composition, abundance and species richness of Miridae from Parque Estadual do Turvo, municipality of Derrubadas, state of Rio Grande do Sul, Brazil. Samplings were made in the springs of 2003 and 2004 (October), and autumns of 2004 and 2005 (May), using a beating tray method, along two trails of the park. Sampling effort (hours x collectors) in the quantitative collections totaled 153 hours. Two-hundred mirid specimens of 50 species were collected. The most abundant mirid was Prepops setosipes (Reuter, 1910), representing 23% of the collected individuals, followed by Collaria capixaba Carvalho & Fontes, 1981 (10.5%) and Tropidosteptes cribratus (Stål, 1860) (7%), the latter recorded in all sampling periods. The highest abundance was observed in the springs of 2003 and 2004, with 53 and 78 individuals, respectively. Rarefaction method showed that estimated species richness was higher in autumn/2004 than in the other sampling periods, and higher along Yucumã than in Garcia trail. Besides a higher species richeness, Yucumã had more exclusive species than Garcia trail. The percent of species represented by one or two specimens in quantitative samplings (singletons and doubletons) was 60%. Additional samplings including hand collection, random beating tray and light trap collections added 20 species not recorded in the quantitative samplings.
Resumo:
1. Intra-specific variation in plant defence traits has been shown to profoundly affect herbivore community structure. Here we describe two experiments designed to test whether similar effects occur at higher trophic levels, by studying pea aphid–natural enemy interactions in a disused pasture in southern England. 2. In the first experiment, the numbers and identity of natural enemies attacking different monoclonal pea aphid colonies were recorded in a series of assays throughout the period of pea aphid activity. 3. In the summer assay, there was a significant effect of clone on the numbers of aphidophagous hoverfly larvae and the total number of non-hoverfly natural enemies recruited. Clone also appeared to influence the attack rate suffered by the primary predator in the system, the hoverfly Episyrphus balteatus, by Diplazon laetatorius, an ichneumonid parasitoid. Colonies were generally driven to extinction by hoverfly attack, resulting in the recording of low numbers of parasitoids and entomopathogens, suggesting intense intra-guild predation. 4. To further examine the influence of clonal variation on the recruitment of natural enemies, a second experiment was performed to monitor the temporal dynamics of community development. Colonies were destructively sampled every other day and the numbers of natural enemies attacking aphid colonies were recorded. These data demonstrated that clonal variation influenced the timing, abundance, and identity of natural enemies attacking aphid colonies. 5. Taken together, these data suggest that clonal variation may have a significant influence on the patterns of interactions between aphids and their natural enemies, and that such effects are likely to affect our understanding of the ecology and biological control of these insect herbivores.
Resumo:
To investigate the role of ecological and historical factors in the organization of communities, we describe the ecomorphological structure of an assemblage of snakes (61 species in six families) in the Cerrado (a savanna-like grassland) of Distrito Federal, Brazil. These snakes vary in habits, with some being fossorial, cryptozoic, terrestrial, semi-aquatic, or arboreal. Periods of activity also vary. A multivariate analysis identified distinct morphological groups associated with patterns of resource use. We report higher niche diversification compared to snakes in the Caatinga (a semi-arid region in northeastern Brazil), with fossorial and cryptozoic species occupying morphological space that is not occupied in the Caatinga. Monte Carlo permutations from canonical phylogenetic ordination revealed a significant phylogenetic effect on morphology for Colubridae, Colubrinae, Viperidae, Elapidae, and Boidae indicating that morphological divergence occurred in the distant past. We conclude that phylogeny is the most important factor determining structure of this Neotropical assemblage. Nevertheless, our results also suggest a strong ecological component characterizes a peculiar snake fauna.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: The present study was developed in a deforested stream located in a region that exhibits marked seasonality with the purpose to investigate whether ecological descriptors of the quantitative structure (i.e., composition, abundance, biomass, species richness, diversity) and feeding of fishes do change between the dry and wet periods. Methods: Sampling was conducted bimonthly from April 2004 to February 2005 by using a standardized effort with electrofishing equipment and environmental variables measurements. Results: We collected 713 fishes belonging to 23 species. The most abundant species were Gymnotus carapo (24.0%) and Poecilia reticulata (23.8%). Species richness, abundance, and biomass showed to be higher in the wet period, but these differences were not significant and did not influence the multivariate pattern of the assemblage (ANOSIM, R = 0.148). Nevertheless, average dissimilarity between community structure in the dry and wet periods was 52.7%, mainly due to the differential contribution of P. reticulata, notably more abundant in the wet season, under quasi-hypoxic water conditions. Examination of 333 gastric contents of 12 species evidenced that food variety was higher in the dry period. of these species, 67% (Astyanax altiparanae, Astyanax fasciatus, Geophagus brasiliensis, Gymnotus carapo, Hypostomus ancistroides, Phalloceros harpagos, Poecilia reticulata, and Rhamdia quelen) kept the diet throughout the year, being classified in the same trophic groups in both periods, and detritus was the most important item for half of them, followed by aquatic insects. Overall, no significant differences in the community's diet between periods were registered (ANOSIM, R = [long dash]0.04). Conclusions: This relative constancy suggests a quite regular availability of resources (mainly shelters in submerged marginal grasses and detritus) along the year.
Resumo:
The significance of recruitment systems for community structure of epigaeic ants in a tropical upland forest in southern Brazil was evaluated by examining patterns of spatial occurrence at fixed points. Normal exploratory activity was evaluated with pitfall traps, while the effect of recruitment and diet was evaluated by using honey and sardine baits at the same points. Through techniques developed for environmental impact assessment, the significance of recruitment was evaluated following perturbation, or the placement of bait. Of the 46 species encountered, 15 were sufficiently frequent to study. Of these, only 6 showed significant spatial frequency changes at baits when compared with pitfall trap collections. In one analysis, monthly differences were important for a few smaller species, suggesting thermic limitations, while bait types either increased or decreased spatial point usage. The magnitude of spatial point variation is an index for the strength of recruitment in community organization. Bait types suggest nutritional possibilities of each species. Both recruitment and diet are probably functions of the species composition of the ant community.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)