903 resultados para arterial blood
Resumo:
Objective. The purpose of this study was to evaluate the effect of total abdominal hysterectomy on ovarian blood supply using transvaginal color Doppler ultrasonography in women of reproductive age. Methods. This prospective study included 61 women aged 40 years or younger who were divided into 2 groups: group 1, comprising 31 patients who underwent total abdominal hysterectomy (TAH), and group 2, comprising 30 women with no abnormalities. Inclusion criteria included normal ovarian function at baseline, with basal follicle-stimulating hormone levels of less than 15 mUI/mL, normal body weight, no tobacco use, and no history of laparotomy or ovarian disease. Ovarian arterial blood supply by determination of the pulsatility index (PI) on Doppler analysis and ovarian volume on transvaginal ultrasonography were assessed at baseline and at 6 and 12 postoperative months. The Student t test, profile analysis, and Friedman and Mann-Whitney tests were used in the statistical analysis of data. Results. Statistical analysis of baseline data revealed that both groups were homogeneous. At months 6 and 12, greater ovarian volumes and lower PI values were observed in patients who underwent TAH (P < .05). By the end of the study, in 8 of the 31 patients who underwent TAH (25.5%), benign ovarian cysts were observed. in the control group, all the parameters studied remained unchanged. Conclusions. The reduced PI values observed on Doppler ultrasonography suggested a decrease in the resistance flow in the ovarian arteries in women of reproductive age who underwent TAH.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective - To evaluate the effect of changing the mode of ventilation from spontaneous to controlled on the arterial-to-end-tidal CO2 difference [P(a-ET)CO2] and physiological dead space (VD(phys)/VT) in laterally and dorsally recumbent halothane-anesthetized horses. Study Design - Prospective, experimental, nonrandomized trial. Animals - Seven mixed breed adult horses (1 male and 6 female) weighing 320 ± 11 kg. Methods - Horses were anesthetized in 2 positions - right lateral and dorsal recumbency - with a minimum interval of 1 month. Anesthesia was maintained with halothane in oxygen for 180 minutes. Spontaneous ventilation (SV) was used for 90 minutes followed by 90 minutes of controlled ventilation (CV). The same ventilator settings were used for both laterally and dorsally recumbent horses. Arterial blood gas analysis was performed every 30 minutes during anesthesia. End-tidal CO2 (PETCO2) was measured continuously. P(a-ET)CO2 and VD(phys)/VT were calculated. Statistical analysis included analysis of variance for repeated measures over time, followed by Student-Newman-Keuls test. Comparison between groups was performed using a paired t test; P < .05 was considered significant. Results - P(a-ET)CO2 and VD(phys)/VT increased during SV, whereas CV reduced these variables. The variables did not change significantly throughout mechanical ventilation in either group. Dorsally recumbent horses showed greater P(a-ET)CO2 and VD(phys)/VT values throughout. PaCO2 was greater during CV in dorsally positioned horses. Conclusions and Clinical Relevance - Changing the mode of ventilation from spontaneous to controlled was effective in reducing P(a-ET)CO2 and physiological dead space in both laterally and dorsally recumbent halothane-anesthetized horses. Dorsal recumbency resulted in greater impairment of effective ventilation. Capnometry has a limited value for accurate estimation of PaCO, in anesthetized horses, although it may be used to evaluate pulmonary function when paired with arterial blood gas analysis. © Copyright 2000 by The American College of Veterinary Surgeons.
Resumo:
Aims The macrophage migration inhibitory factor (MIF) is an intracellular inhibitor of the central nervous system actions of angiotensin II on blood pressure. Considering that angiotensin II actions at the nucleus of the solitary tract are important for the maintenance of hypertension in spontaneously hypertensive rats (SHRs), we tested if increased MIF expression in the nucleus of the solitary tract of SHR alters the baseline high blood pressure in these rats.Methods and resultsEight-week-old SHRs or normotensive rats were microinjected with the vector AAV2-CBA-MIF into the nucleus of the solitary tract, resulting in MIF expression predominantly in neurons. Rats also underwent recordings of the mean arterial blood pressure (MAP) and heart rate (via telemetry devices implanted in the abdominal aorta), cardiac- and baroreflex function. Injections of AAV2-CBA-MIF into the nucleus of the solitary tract of SHRs produced significant decreases in the MAP, ranging from 10 to 20 mmHg, compared with age-matched SHRs that had received identical microinjections of the control vector AAV2-CBA-eGFP. This lowered MAP in SHRs was maintained through the end of the experiment at 31 days, and was associated with an improvement in baroreflex function to values observed in normotensive rats. In contrast to SHRs, similar increased MIF expression in the nucleus of the solitary tract of normotensive rats produced no changes in baseline MAP and baroreflex function.ConclusionThese results indicate that an increased expression of MIF within the nucleus of the solitary tract neurons of SHRs lowers blood pressure and restores baroreflex function. © 2012 Published on behalf of the European Society of Cardiology. All rights reserved.
Resumo:
INTRODUCTION: Resistance training (RT) has been widely used for older adults in order to minimize or reverse the deleterious effects of aging in the neuromuscular system. However, the potential benefits of RT on arterial blood pressure and heart rate at rest in older adults remain controversial. OBJECTIVE: To analyze the effect of eight weeks of RT on systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and heart rate (HR) in older women without hypertension. METHODS: Seventeen women (aged 66.0 ± 5.8 years) without previous experience in RT were randomly assigned to either a training (TG, n = 10) or control (CG, n = 7) groups. Hemodynamic parameters at rest were evaluated by auscultatory method (mercury sphygmomanometer) and HR monitor (Polar), before and after eight weeks of experimental period. RESULTS: Reductions attributable to RT were found only to SBP (-13.4 mmHg, p <0.01). Although significant reductions were observed for DBP and MBP, the analysis of covariance showed no interaction Group x Time significant. CONCLUSION: RT proved an effective training to promote adaptations in the cardiovascular system of older women without hypertension. Eight weeks of RT can significantly reduce SBP at rest in older women.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The evaluation of blood pressure is an essential tool for veterinarian clinical practice and for monitoring anesthetized patients or patients in intensive care, because of its usefulness in diagnostics, treatment and monitoring of several diseases. Apart from the pathological factor, the blood pressure also suffers the influence of different variables, such as age, breed, gender, temperament (anxiety and stress especially during the treatment, “white coat syndrome”), disease state, physical activity and, with lower intensity, animal’s diet. One of the main indications of the evaluation of blood pressure is the observation of clinical changes resulting from hypertension in animals, which one is characterized by lesions in the nervous and cardiovascular systems, kidneys and eyes. Not least important, the evaluation of blood pressure is also essential in hypotensive states, which represent an imminent risk of death. The techniques used in measuring blood pressure correspond to invasive forms (direct) or non invasive (indirect), whose correlation has been the subject of study and improvement within the small animal clinic. Thus, the purpose of this review is emphasize the importance of measuring blood pressure within the veterinary clinic routine, studying the influence of variables associated or not with elevated blood pressure, comparing the different methods used to obtain the blood pressure
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Previous studies have shown that fresh squeezed orange juice or juice from reconstituted concentrate can help prevent the development of atherosclerosis. Pasteurized orange juice presently represents the major orange juice available in the market, and because of this, it becomes necessary to determine the healthy benefits associated with this product. In this study we investigated the effect of regular consumption of pasteurized orange juice on the nutritional status, biochemical profile, and arterial blood pressure in healthy men and women. Men and women volunteered to consume pasteurized orange juice (500 mL·d–1 and 750 mL·d–1, respectively), for 8 weeks. Anthropometric, biochemical, hemodynamic, and dietary assessments were evaluated at baseline and at the end of the experimental period. Total cholesterol and LDL-C significantly decreased in both men and women after the consumption of orange juice, and an increase in HDL-C level was detected exclusively in women. Fasting glucose, diastolic blood pressure, and triglyceride levels dropped in men after the consumption of orange juice. Anthropometric variables did not change with orange juice consumption, only waist circumference decreased significantly in women. Consumption of orange juice increased the energy and carbohydrate intake for women; however, vitamin C and folate increased after the orange juice period for both men and women. Regular consumption of pasteurized orange juice by men (750 mL·d–1) and women (500 mL·d–1) reduced the risk of developing atherosclerosis, and increased the nutritional quality of their diets.
Resumo:
Background: Although plasmid DNA encoding an antigen from pathogens or tumor cells has been widely studied as vaccine, the use of plasmid vector (without insert) as therapeutic agent requires further investigation. Results: Here, we showed that plasmid DNA (pcDNA3) at low doses inhibits the production of IL-6 and TNF-alpha by lipopolysaccharide (LPS)-stimulated macrophage cell line J774. These findings led us to evaluate whether plasmid DNA could act as an anti-inflammatory agent in a Wistar rat endotoxemia model. Rats injected simultaneously with 1.5 mg/kg of LPS and 10 or 20 mu g of plasmid DNA had a remarkable attenuation of mean arterial blood pressure (MAP) drop at 2 hours after treatment when compared with rats injected with LPS only. The beneficial effect of the plasmid DNA on MAP was associated with decreased expression of IL-6 in liver and increased concentration of plasma vasopressin (AVP), a known vasoconstrictor that has been investigated in hemorrhagic shock management. No difference was observed in relation to nitric oxide (NO) production. Conclusion: Our results demonstrate for the first time that plasmid DNA vector at low doses presents anti-inflammatory property and constitutes a novel approach with therapeutic potential in inflammatory diseases.
Resumo:
Aims: Adrenomedullin (AM) is a peptide that displays cardiovascular protective activity. We investigated the effects of chronic ethanol consumption on arterial blood pressure, vascular reactivity to AM and the expression of AM system components in the rat mesenteric arterial bed (MAB). Methods: Male Wistar rats were treated with ethanol (20% vol/vol) for 6 weeks. Systolic, diastolic and mean arterial blood pressure were monitored in conscious rats. Vascular reactivity experiments were performed on isolated rat MAB. Matrix metalloproteinase-2 (MMP-2) levels were determined by gelatin zymography. Nitrite and nitrate generation were measured by chemiluminescence. Protein and mRNA levels of pre-pro-AM, CRLR (calcitonin receptor-like receptor) and RAMP1, 2 and 3 (receptor activity-modifying proteins) were assessed by western blot and quantitative real-time polymerase chain reaction, respectively. Results: Ethanol consumption induced hypertension and decreased the relaxation induced by AM and acetylcholine in endothelium-intact rat MAB. Phenylephrine-induced contraction was increased in endothelium-intact MAB from ethanol-treated rats. Ethanol consumption did not alter basal levels of nitrate and nitrite, nor did it affect the expression of MMP-2 or the net MMP activity in the rat MAB. Ethanol consumption increased mRNA levels of pre-pro-AM and protein levels of AM in the rat MAB. Finally, no differences in protein levels or mRNA of CRLR and RAMP1, 2 and 3 were observed after treatment with ethanol. Conclusion: Our study demonstrates that ethanol consumption increases blood pressure and the expression of AM in the vasculature and reduces the relaxation induced by this peptide in the rat MAB.
Resumo:
[EN] To determine central and peripheral hemodynamic responses to upright leg cycling exercise, nine physically active men underwent measurements of arterial blood pressure and gases, as well as femoral and subclavian vein blood flows and gases during incremental exercise to exhaustion (Wmax). Cardiac output (CO) and leg blood flow (BF) increased in parallel with exercise intensity. In contrast, arm BF remained at 0.8 l/min during submaximal exercise, increasing to 1.2 +/- 0.2 l/min at maximal exercise (P < 0.05) when arm O(2) extraction reached 73 +/- 3%. The leg received a greater percentage of the CO with exercise intensity, reaching a value close to 70% at 64% of Wmax, which was maintained until exhaustion. The percentage of CO perfusing the trunk decreased with exercise intensity to 21% at Wmax, i.e., to approximately 5.5 l/min. For a given local Vo(2), leg vascular conductance (VC) was five- to sixfold higher than arm VC, despite marked hemoglobin deoxygenation in the subclavian vein. At peak exercise, arm VC was not significantly different than at rest. Leg Vo(2) represented approximately 84% of the whole body Vo(2) at intensities ranging from 38 to 100% of Wmax. Arm Vo(2) contributed between 7 and 10% to the whole body Vo(2). From 20 to 100% of Wmax, the trunk Vo(2) (including the gluteus muscles) represented between 14 and 15% of the whole body Vo(2). In summary, vasoconstrictor signals efficiently oppose the vasodilatory metabolites in the arms, suggesting that during whole body exercise in the upright position blood flow is differentially regulated in the upper and lower extremities.
Resumo:
[EN] Chronic hypoxia is associated with elevated sympathetic activity and hypertension in patients with chronic pulmonary obstructive disease. However, the effect of chronic hypoxia on systemic and regional sympathetic activity in healthy humans remains unknown. To determine if chronic hypoxia in healthy humans is associated with hyperactivity of the sympathetic system, we measured intra-arterial blood pressure, arterial blood gases, systemic and skeletal muscle noradrenaline (norepinephrine) spillover and vascular conductances in nine Danish lowlanders at sea level and after 9 weeks of exposure at 5260 m. Mean blood pressure was 28 % higher at altitude (P < 0.01) due to increases in both systolic (18 % higher, P < 0.05) and diastolic (41 % higher, P < 0.001) blood pressures. Cardiac output and leg blood flow were not altered by chronic hypoxia, but systemic vascular conductance was reduced by 30 % (P < 0.05). Plasma arterial noradrenaline (NA) and adrenaline concentrations were 3.7- and 2.4-fold higher at altitude, respectively (P < 0.05). The elevation of plasma arterial NA concentration was caused by a 3.8-fold higher whole-body NA release (P < 0.001) since whole-body noradrenaline clearance was similar in both conditions. Leg NA spillover was increased similarly (x 3.2, P < 0.05). These changes occurred despite the fact that systemic O2 delivery was greater after altitude acclimatisation than at sea level, due to 37 % higher blood haemoglobin concentration. In summary, this study shows that chronic hypoxia causes marked activation of the sympathetic nervous system in healthy humans and increased systemic arterial pressure, despite normalisation of the arterial O2 content with acclimatisation.
Resumo:
The aim of this study was to analyse the cerebral venous outflow in relation to the arterial inflow during a Valsalva manoeuvre (VM). In 19 healthy volunteers (mean age 24.1 +/- 2.6 years), the middle cerebral artery (MCA) and the straight sinus (SRS) were insonated by transcranial Doppler sonography. Simultaneously the arterial blood pressure was recorded using a photoplethysmographic method. Two VM of 10 s length were performed per participant. Tracings of the variables were then transformed to equidistantly re-sampled data. Phases of the VM were analysed regarding the increase of the flow velocities and the latency to the peak. The typical four phases of the VM were also found in the SRS signal. The relative flow velocity (FV) increase was significantly higher in the SRS than in the MCA for all phases, particularly that of phase IV (p < 0.01). Comparison of the time latency of the VM phases of the MCA and SRS only showed a significant difference for phase I (p < 0.01). In particular, there was no significant difference for phase IV (15.8 +/- 0.29 vs. 16.0 +/- 0.28 s). Alterations in venous outflow in phase I are best explained by a cross-sectional change of the lumen of the SRS, while phases II and III are compatible with a Starling resistor. However, the significantly lager venous than the arterial overshoot in phase IV may be explained by the active regulation of the venous tone.
Resumo:
Insufficient cardiac preload and impaired contractility are frequent in early sepsis. We explored the effects of acute cardiac preload reduction and dobutamine on hepatic arterial (Qha) and portal venous (Qpv) blood flows during endotoxin infusion. We hypothesized that the hepatic arterial buffer response (HABR) is absent during preload reduction and reduced by dobutamine. In anesthetized pigs, endotoxin or vehicle (n = 12, each) was randomly infused for 18 h. HABR was tested sequentially by constricting superior mesenteric artery (SMA) or inferior vena cava (IVC). Afterward, dobutamine at 2.5, 5.0, and 10.0 μg/kg per minute or another vehicle (n = 6, each) was randomly administered in endotoxemic and control animals, and SMA was constricted during each dose. Systemic (cardiac output, thermodilution) and carotid, splanchnic, and renal blood flows (ultrasound Doppler) and blood pressures were measured before and during administration of each dobutamine dose. HABR was expressed as hepatic arterial pressure/flow ratio. Compared with controls, 18 h of endotoxin infusion was associated with decreased mean arterial blood pressure [49 ± 11 mmHg vs. 58 ± 8 mmHg (mean ± SD); P = 0.034], decreased renal blood flow, metabolic acidosis, and impaired HABR during SMA constriction [0.32 (0.18-1.32) mmHg/ml vs. 0.22 (0.08-0.60) mmHg/ml; P = 0.043]. IVC constriction resulted in decreased Qpv in both groups; whereas Qha remained unchanged in controls, it decreased after 18 h of endotoxemia (P = 0.031; constriction-time-group interaction). One control and four endotoxemic animals died during the subsequent 6 h. The maximal increase of cardiac output during dobutamine infusion was 47% (22-134%) in controls vs. 53% (37-85%) in endotoxemic animals. The maximal Qpv increase was significant only in controls [24% (12-47%) of baseline (P = 0.043) vs. 17% (-7-32%) in endotoxemia (P = 0.109)]. Dobutamine influenced neither Qha nor HABR. Our data suggest that acute cardiac preload reduction is associated with preferential hepatic arterial perfusion initially but not after established endotoxemia. Dobutamine had no effect on the HABR.