744 resultados para aquifer recharge
Resumo:
Tidal fluctuations in a leaky confined coastal aquifer are damped significantly due to leakage into an overlying phreatic aquifer. Jiao and Tang [1999] presented an analytical solution to a simple model describing this phenomenon. Their solution assumes that the tidal fluctuations in the overlying phreatic aquifer are negligible (i.e,, a static phreatic aquifer), Here we examine dynamic effects of the overlying aquifer based on a new approximate analytical solution. The numerical results indicate that the dynamic effects can be significant for a relatively large leakage and a high transmissivity of the phreatic aquifer.
Resumo:
Drainage of a saturated horizontal aquifer following a sudden drawdown is reanalyzed using the Boussinesq equation. The effect of the finite length of the aquifer is considered in detail. An analytical approximation based on a superposition principle yields a very good estimate of the outflow when compared to accurate numerical solutions. An illustration of the new analytical approach to analyze basin-scale field data is used to demonstrate possible field applications of the new solution.
Resumo:
An analytical solution is derived for tidal fluctuations in a coupled coastal aquifer system consisting of a semi-confined aquifer, a thin semi-permeable layer and a phreatic aquifer. Based on the solution, we study the interactions (via leakage) between the confined and unconfined aquifers in response to tides. The results show that, under certain conditions, leakage from the confined aquifer can affect considerably the tidal water table fluctuation in the phreatic aquifer and vice versa. Ignoring these effects could lead to errors in estimating aquifer properties based on tidal signals. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Damping of tidal head fluctuations in a leaky confined coastal aquifer is enhanced by leakage into an overlying phreatic aquifer. We show that the phreatic aquifer is, however, resistant to the leakage flow and in particular, a deep phreatic aquifer can reduce the leakage effects significantly. An analytical solution, based on a vertical flow model for the phreatic aquifer, is derived for quantifying the role of this upper free water body in tidal propagation in the lower semi-confined aquifer. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Predictions of water table fluctuations in coastal aquifers are needed for numerous coastal and water resources engineering problems. Most previous investigations have been based on the Boussinesq equation for the case of a vertical beach. In this note an analytical solution based on shallow water expansion for the spring- neap tide- induced water table fluctuations in a coastal aquifer is presented. Unlike most previous investigations, multitidal signals are considered with a sloping coastal aquifer. The new solution is verified by comparing with field observations from Ardeer, Scotland. On the basis of the analytical approximation the influences of higher- order components on water table elevation are examined first. Then, a parametric study has been performed to investigate the effects of the amplitude ratio (lambda), frequency ratio (omega), and phases (delta(1) and delta(2)) on the tide- induced water table fluctuations in a sloping sandy beach.
Resumo:
The tidal influence on groundwater hydrodynamics, salt-water intrusion and submarine groundwater discharge from coastal/estuarine aquifers is poorly quantified for systems with a mildly sloping beach, in contrast to the case where a vertical beach face is assumed. We investigated the effect of beach slope for a coastal aquifer adjacent to a low-relief estuary, where industrial waste was emplaced over the aquifer. The waste was suspected to discharge leachate towards the estuary. Field observations at various locations showed that tidally induced groundwater head fluctuations were skewed temporally. Frequency analysis suggested that the fluctuation amplitudes decreased exponentially and the phase-tags increased Linearly for the primary tidal signals as they propagated inland. Salinisation zones were observed in the bottom part of the estuary and near the beach surface. Flow and transport processes in a cross-section perpendicular to the estuary were simulated using SEAWAT-2000, which is capable of depicting density-dependent flow and multi-species transport. The simulations showed that the modelled water table fluctuations were in good agreement with the monitored data. Further simulations were conducted to gain insight into the effects of beach slope. In particular the limiting case of a vertical beach face was considered. The simulations showed that density difference and tidal forcing drive a more complex hydrodynamic pattern for the mildly sloping beach than the vertical beach, as well as a profound asymmetry in tidally induced water table fluctuations and enhanced salt-water intrusion. The simulation results also indicated that contaminant transport from the aquifer to the estuary was affected by the tide, where for the mildly sloping beach, the tide tended to intensify the vertical mass exchange in the vicinity of the shorelines, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Field studies have shown that the elevation of the beach groundwater table varies with the tide and such variations affect significantly beach erosion or accretion. In this paper, we present a BEM (Boundary Element Method) model for simulating the tidal fluctuation of the beach groundwater table. The model solves the two-dimensional flow equation subject to free and moving boundary conditions, including the seepage dynamics at the beach face. The simulated seepage faces were found to agree with the predictions of a simple model (Turner, 1993). The advantage of the present model is, however, that it can be used with little modification to simulate more complicated cases, e.g., surface recharge from rainfall and drainage in the aquifer may be included (the latter is related to beach dewatering technique). The model also simulated well the field data of Nielsen (1990). In particular, the model replicated three distinct features of local water table fluctuations: steep rising phase versus flat falling phase, amplitude attenuation and phase lagging.
Resumo:
Mixed confined and unconfined groundwater flow occurs in a bounded initially dry aquifer when the hydraulic head at the side boundary suddenly rises above the elevation of the aquifer's top boundary. The flow problem as modelled by the Boussinesq equation is non-trivial because of the involvement of two moving boundaries. The transformed equation (based on a similarity transformation) can, however, be dealt with more easily. Here, we present an approximate analytical solution for this flow problem. The approximate solution is compared with an 'exact' numerical solution and found to be a very accurate description for describing the mixed confined and unconfined flow in the confined aquifer. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
[1] Comprehensive measurements are presented of the piezometric head in an unconfined aquifer during steady, simple harmonic oscillations driven by a hydrostatic clear water reservoir through a vertical interface. The results are analyzed and used to test existing hydrostatic and nonhydrostatic, small-amplitude theories along with capillary fringe effects. As expected, the amplitude of the water table wave decays exponentially. However, the decay rates and phase lags indicate the influence of both vertical flow and capillary effects. The capillary effects are reconciled with observations of water table oscillations in a sand column with the same sand. The effects of vertical flows and the corresponding nonhydrostatic pressure are reasonably well described by small-amplitude theory for water table waves in finite depth aquifers. That includes the oscillation amplitudes being greater at the bottom than at the top and the phase lead of the bottom compared with the top. The main problems with respect to interpreting the measurements through existing theory relate to the complicated boundary condition at the interface between the driving head reservoir and the aquifer. That is, the small-amplitude, finite depth expansion solution, which matches a hydrostatic boundary condition between the bottom and the mean driving head level, is unrealistic with respect to the pressure variation above this level. Hence it cannot describe the finer details of the multiple mode behavior close to the driving head boundary. The mean water table height initially increases with distance from the forcing boundary but then decreases again, and its asymptotic value is considerably smaller than that previously predicted for finite depth aquifers without capillary effects. Just as the mean water table over-height is smaller than predicted by capillarity-free shallow aquifer models, so is the amplitude of the second harmonic. In fact, there is no indication of extra second harmonics ( in addition to that contained in the driving head) being generated at the interface or in the interior.
Resumo:
The aim of this project is to evaluate the importance of submarine groundwater discharge sector in order to improve the water balance in Málaga-Granada region. The approach of this study arose from the the geology and the aquifers that indicate that there could be some discharge to the sea between Maro (Málaga) and Almuñécar (Granada) and the Andalusian’s Government and its Water Agence were really interested in evaluating it because there is a lot of population and few water available and the magnitude of groundwater discharge has generated controversy. Is well known that water is a scarce resource in this area and it’s very important for the society and for the environment. The legislation, the water policies, the knowledge of the aquifer and the geology, the water dynamics, the land use and the water perception in the society might help the management of this resource not just in Andalusia but in all the Mediterranean basin. The main objective is to evaluate the submarine groundwater discharge from the Alberquillas Aqufier to the sea by measuring 222Rn and Ra isotopes. Specific objectives have been established to achieve the main objective: A) Reveal the importance of water resources in the Mediterranean basin; B) Learn radiometric techniques for the study of groundwater discharge to the sea; C) Learn of sampling techniques of water samples for the measurement of Ra and Rn; D) Learn the techniques for measuring Ra (RaDeCC) and Rn (RAD7); E) Interpretation and discussion of results. During this semester, and in addition of the present study in Málaga- Granada region, the author has participated in the initial phase (sampling, analysis and interpretation of preliminary results) of other research projects focused on the study of submarine groundwater discharges through the use of Ra isotopes and 222Rn. These studies have been developed in different areas, including Alt Empordà (Roses and Sant Pere Pescador), Maresme with CMIMA’s group (Mediterranean Center for Marine and Environmental Research), Delta de l’Ebre, Peñíscola and Mallorca with the IMEDEA’s group (Mediterranean Institute for Advanced Studies).
Ambient vertical flow in long-screen wells: a case study in the Fontainebleau Sands Aquifer (France)
Resumo:
A tritium (H-3) profile was constructed in a long-screened well (LSW) of the Fontainebleau Sands Aquifer (France), and the data were combined with temperature logs to gain insight into the potential effects of the ambient vertical flow (AVF) of water through the well on the natural aquifer stratification. AVF is commonly taken into account in wells located in fracture aquifers or intercepting two different aquifers with distinct hydraulic heads. However, due to the vertical hydraulic gradient of the flow lines intercepted by wells, AVF of groundwater is a common process within any type of aquifer. The detection of 3H in the deeper parts of the studied well ( approximate depth 50m), where H-3-free groundwater is expected, indicates that shallow young water is being transported downwards through the well itself. The temperature logs show a nearly zero gradient with depth, far below the mean geothermal gradient in sedimentary basins. The results show that the age distribution of groundwater samples might be biased in relation to the age distribution in the surroundings of the well. The use of environmental tracers to investigate aquifer properties, particularly in LSWs, is then limited by the effects of the AVF of water that naturally occurs through the well.
Resumo:
The origin of andesite is an important issue in petrology because andesite is the main eruptive product at convergent margins, corresponds to the average crustal composition and is often associated with major Cu-Au mineralization. In this study we present petrographic, mineralogical, geochemical and isotopic data for basaltic andesites of the latest Pleistocene Pilavo volcano, one of the most frontal volcanoes of the Ecuadorian Quaternary arc, situated upon thick (30-50 km) mafic crust composed of accreted Cretaceous oceanic plateau rocks and overlying mafic to intermediate Late Cretaceous-Late Tertiary magmatic arcs. The Pilavo rocks are basaltic andesites (54-57 center dot 5 wt % SiO(2)) with a tholeiitic affinity as opposed to the typical calc-alkaline high-silica andesites and dacites (SiO(2) 59-66 wt %) of other frontal arc volcanoes of Ecuador (e.g. Pichincha, Pululahua). They have much higher incompatible element contents (e.g. Sr 650-1350 ppm, Ba 650-1800 ppm, Zr 100-225 ppm, Th 5-25 ppm, La 15-65 ppm) and Th/La ratios (0 center dot 28-0 center dot 36) than Pichincha and Pululahua, and more primitive Sr ((87)Sr/(86)Sr similar to 0 center dot 7038-0 center dot 7039) and Nd (epsilon(Nd) similar to +5 center dot 5 to +6 center dot 1) isotopic signatures. Pilavo andesites have geochemical affinities with modern and recent high-MgO andesites (e.g. low-silica adakites, Setouchi sanukites) and, especially, with Archean sanukitoids, for both of which incompatible element enrichments are believed to result from interactions of slab melts with peridotitic mantle. Petrographic, mineral chemistry, bulk-rock geochemical and isotopic data indicate that the Pilavo magmatic rocks have evolved through three main stages: (1) generation of a basaltic magma in the mantle wedge region by flux melting induced by slab-derived fluids (aqueous, supercritical or melts); (2) high-pressure differentiation of the basaltic melt (at the mantle-crust boundary or at lower crustal levels) through sustained fractionation of olivine and clinopyroxene, leading to hydrous, high-alumina basaltic andesite melts with a tholeiitic affinity, enriched in incompatible elements and strongly impoverished in Ni and Cr; (3) establishment of one or more mid-crustal magma storage reservoirs in which the magmas evolved through dominant amphibole and clinopyroxene (but no plagioclase) fractionation accompanied by assimilation of the modified plutonic roots of the arc and recharge by incoming batches of more primitive magma from depth. The latter process has resulted in strongly increasing incompatible element concentrations in the Pilavo basaltic andesites, coupled with slightly increasing crustal isotopic signatures and a shift towards a more calc-alkaline affinity. Our data show that, although ultimately originating from the slab, incompatible element abundances in arc andesites with primitive isotopic signatures can be significantly enhanced by intra-crustal processes within a thick juvenile mafic crust, thus providing an additional process for the generation of enriched andesites.
Resumo:
We present the study of the geochemical processes associated with the first successful remediation of a marine shore tailings deposit in a coastal desert environment (Bahia de Ite, in the Atacama Desert of Peru). The remediation approach implemented a wetland on top of the oxidized tailings. The site is characterized by a high hydrauliz gradient produced by agricultural irrigation on upstream gravel terraces that pushed river water (similar to 500 mg/L SO(4)) toward the sea and through the tailings deposit. The geochemical and isotopic (delta(2)H(water) and delta(18)O(water), delta(34)S(sulfate) , delta(18)O(sulfate)) approach applied here revealed that evaporite horizons (anhydrite and halite) in the gravel terraces are the source of increased concentrations of SO(4), Cl, and Na up to similar to 1500 mg/L in the springs at the base of the gravel terraces. Deeper groundwater interacting with underlying marine sequences increased the concentrations of SO(4), Cl, and Na up to 6000 mg/L and increased the alkalinity up to 923 mg/L CaCO(3) eq. in the coastal aquifer. These waters infiltrated into the tailings deposit at the shelf-tailings interface. Nonremediated tailings had a low-pH oxidation zone (pH 1-4) with significant accumulations of efflorescent salts (10-20 cm thick) at the surface because of upward capillary transport of metal cations in the arid climate. Remediated tailings were characterized by neutral pH and reducing conditions (pH similar to 7, Eh similar to 100 mV). As a result, most bivalent metals such as Cu, Zn, and Ni had very low concentrations (around 0.01 mg/L or below detection limit) because of reduction and sorption processes. In contrast, these reducing conditions increased the mobility of iron from two sources in this system: (1) The originally Fe(III)-rich oxidation zone, where Fe(II) was reduced during the remediation process and formed an Fe(II) plume, and (2) reductive dissolution of Fe(III) oxides present in the original shelf lithology formed an Fe-Mn plume at 10-m depth. These two Fe-rich plumes were pushed toward the shoreline where more oxidizing and higher pH conditions triggered the precipitation of Fe(HI)hydroxide coatings on silicates. These coatings acted as a filter for the arsenic, which naturally infiltrated with the river water (similar to 500 mu g/L As natural background) into the tailings deposit.