155 resultados para antinociception


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endogenous angiotensin (Ang) II and/or an Ang II-derived peptide, acting on Ang type I (AT(1)) and Ang type 2 (AT(2)) receptors, can carry out part of the nociceptive control modulated by periaqueductal gray matter (PAG). However, neither the identity of this putative Ang-peptide, nor its relationship to Ang II antinociceptive activity was clarified. Therefore, we have used tail-flick and incision allodynia models combined with an HPLC time course of Ang metabolism, to study the Ang III antinociceptive effect in the rat ventrolateral (vi) PAG using peptidase inhibitors and receptor antagonists. Ang III injection into the vIPAG increased tail-flick latency, which was fully blocked by Losartan and CGP 42,112A, but not by divalinal-Ang IV, indicating that. Ang III effect was mediated by AT(1) and AT(2) receptors, but not by the AT(4) receptor. Ang III injected into the vIPAG reduced incision allodynia. Incubation of Ang II with punches of vIPAG homogenate formed Ang III, Ang (1-7) and Ang IV. Amastatin (AM) inhibited the formation of Ang III from Ang II by homogenate, and blocked the antinociceptive activity of Ang II injection into vIPAG, suggesting that aminopeptidase A (APA) formed Ang III from Ang II. Ang III can also be formed from Ang I by a vIPAG alternative pathway. Therefore, the present work shows, for the first time, that: (i) Ang III, acting on AT(1) and AT(2) receptors, can elicit vIPAG-mediated antinociception, (ii) the conversion of Ang II to Ang III in the vIPAG is required to elicit antinociception, and (iii) the antinociceptive activity of endogenous Ang II in vIPAG can be ascribed preponderantly to Ang III. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the potential antinociceptive and toxicity of Canavalia boliviana lectin (CboL) using different methods in mice. The role of carbohydrate-binding sites was also investigated. CboL given to mice daily for 14 days at doses of 5 mg/kg did not cause any observable toxicity. CboL (1, 5, and 10 mg/kg) administered to mice intravenously inhibited abdominal constrictions induced by acetic acid and the two phases of the formalin test. In the hot plate and tail immersion tests, the same treatment of CboL induced significant increase in the latency period. In the hot plate test, the effect of CboL (5 mg/kg) was reversed by naloxone (1 mg/kg), indicating the involvement of the opioid system. In the open-field and rota-rod tests, the CboL treatment did not alter animals` motor function. These results show that CboL presents antinociceptive effects of both central and peripheral origin, involving the participation of the opioid system via lectin domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vocalization generated by the application of a noxious stimulus is an integrative response related to the affective-motivational component of pain. The rostral ventromedial medulla (RVM) plays an important role in descending pain modulation, and opiates play a major role in modulation of the antinociception mediated by the RVM. Further, it has been suggested that morphine mediates antinociception indirectly, by inhibition of tonically active GABAergic neurons. The current study evaluated the effects of the opioids and GABA agonists and antagonists in the RVM on an affective-motivational pain model. Additionally, we investigated the opioidergic-GABAergic interaction in the RVM in the vocalization response to noxious stimulation. Microinjection of either morphine (4.4 nmo1/0.2 mu l) or bicuculline (0.4 nmo1/0.2 mu l) into the RVM decreased the vocalization index, whereas application of the GABA(A) receptor agonist, musci-mol (0.5 nmo1/0.2 mu l) increased the vocalization index during noxious stimulation. Furthermore, prior microinjection of either the opioid antagonist naloxone (2.7 nmo1/0.2 mu l) or muscimol (0.25 nmo1/0.2 mu l) into the RVM blocked the reduction in vocalization index induced by morphine. These observations suggest an antinociceptive and pro-nociceptive role of the opioidergic and GABAergic neurotransmitters in the RVM, respectively. Our data show that opioids have an antinociceptive effect in the RVM, while GABAergic neurotransmission is related to the facilitation of nociceptive responses. Additionally, our results indicate that the antinociceptive effect of the opioids in the RVM could be mediated by a disinhibition of tonically active GABAergic interneurons in the downstream projection neurons of the descending pain control system; indicating an interaction between the opioidergic and GABAergic pathways of pain modulation. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Several physiological, pharmacological and behavioral lines of evidence suggest that the hippocampal formation is involved in nociception. The hippocampus is also believed to play an important role in the affective and motivational components of pain perception. Thus, Our aim was to investigate the participation of cholinergic, opioidergic and GABAergic systems of the dorsal hippocampus (DH) in the modulation of nociception in guinea pigs. Main methods: The test used consisted of the application of a peripheral noxious stimulus (electric shock) that provokes the emission of a vocalization response by the animal. Key findings: Our results showed that, in guinea pigs, microinjection of carbachol, morphine and bicuculline into the DH Promoted anti nociception, while muscimol promoted pronociception. These results were verified by a decrease and all increase, respectively, in the vocalization index in the vocalization test. This antinociceptive effect of carbachol (2.7 nmol) was blocked by previous administration of atropine (0.7 nmol) or naloxone (1.3 nmol) into the same site. In addition, the decrease in the vocalization index induced by the microinjection of morphine (2.2 nmol) into the DH was prevented by pretreatment with naloxone (1.3 nmol) or muscimol (0.5 nmol). At doses of 1.0 nmol, muscimol microinjection caused pronociception, while bicuculline promoted antinociception. Significance: These results indicate the involvement of the cholinergic, opioidergic and GABAergic systems of the DH in the modulation of antinociception in guinea pigs. In addition, the present study suggests that cholinergic transmission may activate the release of endorphins/enkephalin from interneurons of the DH, Which Would inhibit GABAergic neurons, resulting in antinociception. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>Cholinergic agonists and acetylcholinesterase inhibitors, such as neostigmine, produce a muscarinic receptor-mediated antinociception in several animal species that depends on activation of spinal cholinergic neurons. However, neostigmine causes antinociception in sheep only in the early, and not late, postoperative period. In the present study, a model of postoperative pain was used to determine the antinociceptive effects of bethanechol (a muscarinic agonist) and neostigmine administered intrathecally 2, 24 or 48 h after a plantar incision in a rat hind paw. Changes in the threshold to punctate mechanical stimuli were evaluated using an automated electronic von Frey apparatus. Mechanical hyperalgesia was obtained following plantar incision, the effect being stronger during the immediate (2 h) than the late post-surgical period. Bethanechol (15-90 mu g/5 mu L) or neostigmine (1-3 mu g/5 mu L) reduced incision-induced mechanical hyperalgesia, the effects of both drugs being more intense during the immediate (2 h) than the late post-surgical period. The ED(50) for bethanechol injected at 2, 24 and 48 h was 5.6, 51.9 and 82.5 mu g/5 mu L, respectively. The corresponding ED(50) for neostigmine was 1.62, 3.02 and 3.8 mu g/5 mu L, respectively. The decline in the antinociceptive potency of neostigmine with postoperative time is interpreted as resulting from a reduction in pain-induced activation of acetylcholine-releasing descending pathways. However, the similar behaviour of bethanechol in the same model points to an additional mechanism involving intrinsic changes in spinal muscarinic receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To compare the cardiorespiratory, anesthetic-sparing effects and quality of anesthetic recovery after epidural and constant rate intravenous (IV) infusion of dexmedetomidine (DEX) in cats given a low dose of epidural lidocaine under propofol-isoflurane anesthesia and submitted to elective ovariohysterectomy. Study design Randomized, blinded clinical trial. Animals Twenty-one adult female cats ( mean body weight: 3.1 +/- 0.4 kg). Methods Cats received DEX (4 mu g kg(-1), IM). Fifteen minutes later, anesthesia was induced with propofol and maintained with isoflurane. Cats were divided into three groups. In GI cats received epidural lidocaine (1 mg kg(-1), n = 7), in GII cats were given epidural lidocaine (1 mg kg(-1)) + DEX (4 mu g kg(-1), n = 7), and in GIII cats were given epidural lidocaine (1 mg kg(-1)) + IV constant rate infusion (CRI) of DEX (0.25 mu g kg(-1) minute(-1), n = 7). Variables evaluated included heart rate (HR), respiratory rate (f(R)), systemic arterial pressures, rectal temperature (RT), end-tidal CO(2), end-tidal isoflurane concentration (E`ISO), arterial blood gases, and muscle tone. Anesthetic recovery was compared among groups by evaluation of times to recovery, HR, f(R), RT, and degree of analgesia. A paired t-test was used to evaluate pre-medication variables and blood gases within groups. ANOVA was used to compare parametric data, whereas Friedman test was used to compare muscle relaxation. Results Epidural and CRI of DEX reduced HR during anesthesia maintenance. Mean +/- SD E/ISO ranged from 0.86 +/- 0.28% to 1.91 +/- 0.63% in GI, from 0.70 +/- 0.12% to 0.97 +/- 0.20% in GII, and from 0.69 +/- 0.12% to 1.17 +/- 0.25% in GIII. Cats in GII and GIII had longer recovery periods than in GI. Conclusions and clinical relevance Epidural and CRI of DEX significantly decreased isoflurane consumption and resulted in recovery of better quality and longer duration, despite bradycardia, without changes in systemic blood pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemopressin (PVNFKFLSH), a novel bioactive peptide derived from the alpha1-chain of hemoglobin, was originally isolated from rat brain homogenates. Hemopressin causes hypotension in anesthetized rats and is metabolized in vivo and in vitro by endopeptidase 24.15 (EP24.15), neurolysin (EP24.16), and angiotensin-converting enzyme (ACE). Hemopressin also exerts an antinociceptive action in experimental inflammatory hyperalgesia induced by carrageenin or bradykinin via a mechanism that is independent of opioids. These findings suggest that this peptide may have important regulatory physiological actions in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The functional interactions between the endogenous cannabinoid and opioid systems were evaluated in pre-proenkephalin-deficient mice. Antinociception induced in the tail-immersion test by acute Delta9-tetrahydrocannabinol was reduced in mutant mice, whereas no difference between genotypes was observed in the effects induced on body temperature, locomotion, or ring catalepsy. During a chronic treatment with Delta9-tetrahydrocannabinol, the development of tolerance to the analgesic responses induced by this compound was slower in mice lacking enkephalin. In addition, cannabinoid withdrawal syndrome, precipitated in Delta9-tetrahydrocannabinol-dependent mice by the injection of SR141716A, was significantly attenuated in mutant mice. These results indicate that the endogenous enkephalinergic system is involved in the antinociceptive responses of Delta9-tetrahydrocannabinol and participates in the expression of cannabinoid abstinence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Repeated THC administration produces motivational and somaticadaptive changes leading to dependence in rodents. Toinvestigate the molecular basis for cannabinoid dependenceand its possible relationship with the endogenous opioid system,we explored Δ9-tetrahydrocannabinol (THC) activity in mice lacking μ-, δ- or κ-opioid receptor genes. Acute THCinduced hypothermia, antinociception, and ypolocomotion remained unaffected in these mice, whereas THC tolerance and withdrawal were minimally modified in mutant animals. In contrast, profound phenotypic changes are observed in several place conditioning protocols that reveal both THC rewarding and aversive properties. Absence of μ receptors abolishes THC place preference. Deletion of κ receptors ablates THC place aversion and furthermore unmasks THC place preference. Thus, an opposing activity of μ- and κ-opioid receptors in modulating reward pathways forms the basis for the dual euphoric–dysphoric activity of THC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the phytochemical study of stem bark and leaves of Cenostigma macrophyllum Tul. (Leguminosae). Through usual chromatographic techniques were isolated bergenin as the primary compound of the stem bark of and from the leaves gallic acid, methyl gallate, ellagic acid, quercetin, quercetin-3-O-β-D-glucopyranoside, quercetin-3-O-(6"-O-galloyl)-β-D-glucopyranoside (tellimoside), quercetin-3-O-(6"-O-E-p-coumaroyl)-β-D-glucopyranoside (helichrysroside), agathisflavone and vitexin were obtained. The isolates were identified by spectroscopic data analysis, and bergenin showed dose-related antinociception when assessed in acetic acid-induced writhing in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opiates have been implicated in learned helplessness (LH), a phenomenon known to be related to opiate stress-induced analgesia (SIA). In the present study, we investigated the role of opiates in the induction of LH and SIA under different conditions. Adult female Wistar rats were trained either by receiving 60 inescapable 1-mA footshocks (IS group, N = 114) or by confinement in the shock box (control or NS group, N = 92). The pain threshold of some of the animals was immediately evaluated in a tail-flick test while the rest were used 24 h later in a shuttle box experiment to examine their escape performance. The opiate antagonist naltrexone (0 or 8 mg/kg, ip) and the previous induction of cross-tolerance to morphine by the chronic administration of morphine (0 or 10 mg/kg, sc, for 13 days) were used to identify opiate involvement. Analysis of variance revealed that only animals in the IS group demonstrated antinociception and an escape deficit, both of which were resistant to the procedures applied before the training session. However, the escape deficit could be reversed if the treatments were given before the test session. We conclude that, under our conditions, induction of the LH deficit in escape performance is not opiate-mediated although its expression is opiate-modulated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intake of saccharin solutions for relatively long periods of time causes analgesia in rats, as measured in the hot-plate test, an experimental procedure involving supraspinal components. In order to investigate the effects of sweet substance intake on pain modulation using a different model, male albino Wistar rats weighing 180-200 g received either tap water or sucrose solutions (250 g/l) for 1 day or 14 days as their only source of liquid. Each rat consumed an average of 15.6 g sucrose/day. Their tail withdrawal latencies in the tail-flick test (probably a spinal reflex) were measured immediately before and after this treatment. An analgesia index was calculated from the withdrawal latencies before and after treatment. The indexes (mean ± SEM, N = 12) for the groups receiving tap water for 1 day or 14 days, and sucrose solution for 1 day or 14 days were 0.09 ± 0.04, 0.10 ± 0.05, 0.15 ± 0.08 and 0.49 ± 0.07, respectively. One-way ANOVA indicated a significant difference (F(3,47) = 9.521, P<0.001) and the Tukey multiple comparison test (P<0.05) showed that the analgesia index of the 14-day sucrose-treated animals differed from all other groups. Naloxone-treated rats (N = 7) receiving sucrose exhibited an analgesia index of 0.20 ± 0.10 while rats receiving only sucrose (N = 7) had an index of 0.68 ± 0.11 (t = 0.254, 10 degrees of freedom, P<0.03). This result indicates that the analgesic effect of sucrose depends on the time during which the solution is consumed and extends the analgesic effects of sweet substance intake, such as saccharin, to a model other than the hot-plate test, with similar results. Endogenous opioids may be involved in the central regulation of the sweet substance-produced analgesia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analgesic efficacy of cholinergic agonists and anticholinesterase agents has been widely recognized. The analgesic effect obtained by activating cholinergic mechanisms, however, seems to depend on the experimental pain model utilized for its evaluation. The antinociceptive effect of intraspinal neostigmine was examined in rats submitted concurrently to the tail flick and formalin tests. Neostigmine (8.25 and 16.5 nmol) produced a dose-dependent antinociceptive effect in the tail flick test (a model of phasic pain) and reduced the first phase (phasic pain) of the animal response to formalin also in a dose-dependent manner. The second phase (tonic pain) of the response to formalin, however, was slightly reduced after a longer period of time only by the higher dose of the anticholinesterase. The effect of neostigmine was not significantly different when the drug was injected into rats submitted exclusively to the tail flick test. The second phase of the animal response to formalin was slightly reduced by neostigmine (8.25 nmol) and strongly inhibited by the higher dose of the anticholinesterase when injection was made after the first phase. We conclude that phasic and tonic pain can both be controlled by high doses of neostigmine. In addition, we show that inhibition by a lower dose of neostigmine of the formalin-induced phasic pain did not prevent the subsequent occurrence of tonic pain produced by the irritant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A function of the endogenous analgesic system is to prevent recuperative behaviors generated by tissue damage, thus preventing the emission of species-specific defensive behaviors. Activation of intrinsic nociception is fundamental for the maintenance of the behavioral strategy adopted. Tonic immobility (TI) is an inborn defensive behavior characterized by a temporary state of profound and reversible motor inhibition elicited by some forms of physical restraint. We studied the effect of TI behavior on nociception produced by the formalin and hot-plate tests in guinea pigs. The induction of TI produced a significant decrease in the number of flinches (18 ± 6 and 2 ± 1 in phases 1 and 2) and lickings (6 ± 2 and 1 ± 1 in phases 1 and 2) in the formalin test when compared with control (75 ± 13 and 22 ± 6 flinches in phases 1 and 2; 28 ± 7 and 17 ± 7 lickings in phases 1 and 2). In the hot-plate test our results also showed antinociceptive effects of TI, with an increase in the index of analgesia 30 and 45 min after the induction of TI (0.67 ± 0.1 and 0.53 ± 0.13, respectively) when compared with control (-0.10 ± 0.08 at 30 min and -0.09 ± 0.09 at 45 min). These effects were reversed by pretreatment with naloxone (1 mg/kg, ip), suggesting that the hypoalgesia observed after induction of TI behavior, as evaluated by the algesimetric formalin and hot-plate tests, is due to activation of endogenous analgesic mechanisms involving opioid synapses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to determine if phenobarbital affects the nociception threshold. Systemic (1-20 mg/kg) phenobarbital administration dose dependently induced hyperalgesia in the tail-flick, hot-plate and formalin tests in rats and in the abdominal constriction test in mice. Formalin and abdominal constriction tests were the most sensitive procedures for the detection of hyperalgesia in response to phenobarbital compared with the tail-flick and hot-plate tests. The hyperalgesia induced by systemic phenobarbital was blocked by previous administration of 1 mg/kg ip picrotoxin or either 1-2 mg/kg sc or 10 ng icv bicuculline. Intracerebroventricular phenobarbital administration (5 µg) induced hyperalgesia in the tail-flick test. In contrast, intrathecal phenobarbital administration (5 µg) induced antinociception and blocked systemic-induced hyperalgesia in this test. We suggest that phenobarbital may mediate hyperalgesia through GABA-A receptors at supraspinal levels and antinociception through the same kind of receptors at spinal levels.