998 resultados para antigen function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secretory component (SC) represents the soluble ectodomain of the polymeric Ig receptor, a membrane protein that transports mucosal Abs across epithelial cells. In the protease-rich environment of the intestine, SC is thought to stabilize the associated IgA by unestablished molecular mechanisms. To address this question, we reconstituted SC-IgA complexes in vitro by incubating dimeric IgA (IgAd) with either recombinant human SC (rSC) or SC isolated from human colostral milk (SCm). Both complexes exhibited an identical degree of covalency when exposed to redox agents, peptidyl disulfide isomerase, and temperature changes. In cross-competition experiments, 50% inhibition of binding to IgAd was achieved at approximately 10 nM SC competitor. Western blot analysis of IgAd digested with intestinal washes indicated that the alpha-chain in IgAd was primarily split into a 40-kDa species, a phenomenon delayed in rSC- or SCm-IgAd complexes. In the same assay, either of the SCs was resistant to degradation only if complexed with IgAd. In contrast, the kappa light chain was not digested at all, suggesting that the F(ab')2 region was left intact. Accordingly, IgAd and SC-IgAd digestion products retained functionality as indicated by Ag reactivity in ELISA. Size exclusion chromatography under native conditions of digested IgAd and rSC-IgAd demonstrates that SC exerts its protective role in secretory IgA by delaying cleavage in the hinge/Fc region of the alpha-chain, not by holding together degraded fragments. The function of integral secretory IgA and F(ab')2 is discussed in terms of mucosal immune defenses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using H-2Kd-restricted photoprobe-specific cytotoxic T lymphocyte (CTL) clones, which permit assessment of T cell receptor (TCR)-ligand interactions by TCR photoaffinity labeling, we observed that the efficiency of antigen recognition by CTL was critically dependent on the half-life of TCR-ligand complexes. We show here that antigen recognition by CTL is essentially determined by the frequency of serial TCR engagement, except for very rapid dissociations, which resulted in aberrant TCR signaling and antagonism. Thus agonists that were efficiently recognized exhibited rapid TCR-ligand complex dissociation, and hence a high frequency of serial TCR engagement, whereas the opposite was true for weak agonists. Surprisingly, these differences were largely accounted for by the coreceptor CD8. While it was known that CD8 substantially decreases TCR-ligand complex dissociation, we observed in this study that this effect varied considerably among ligand variants, indicating that epitope modifications can alter the CD8 contribution to TCR-ligand binding, and hence the efficiency of antigen recognition by CTL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. SUMMARY Based on functional and homing properties, two subsets of memory T lymphocytes have been defined both in humans and in mice. Central memory T cells (TCM cells) express the lymph node homing receptors CD62L and CCR7, have poor effector function and proliferate efficiently upon antigenic stimulation. Effector memory T cells (TEM cells) do not express CCR7, are mostly CD62L negative and therefore are excluded from lymph nodes, but are able to migrate to sites of inflammation where they exert immediate effector function by producing inflammatory cytokines and cytotoxic mediators. In the present work we have addressed two questions that emerged since the definition of TCM and TEM cells. Firstly, what are the priming conditions for generation of TCM and TEM and, secondly, what is the migratory capacity of TCM and TEM cells in inflammatory conditions. By using naive TCR-transgenic OT-I CD8+ T cells and OT-II CD4+ T cells and ovalbumin pulsed-mature dendritic cells (DCs) we set up an in vitro system in which the strength of T cell stimulation is controlled by varying the ratio of T cells and DCs and the duration of DC-T cell interaction. Using this system we found that precursors of TCM and TEM cells are generated at different strength of stimulation and that T cells capable of persisting in vivo in the absence of antigen and of mounting recall responses is optimally induced by intermediate stimulatory strength. In addition, we found that lymph nodes draining sites of mature DC or adjuvant inoculation recruit CD8+ CD62L- CCR7- effector and TEM cells. CD8+ T cell recruitment in reactive lymph nodes requires CXCR3 expression on T cells and occurs through high endothelial venules (HEVs) in concert with HEV lurninal expression of the CXCR3 ligand CXCL9. In reactive lymph nodes, recruited T cells establish stable interactions with and kill antigen-bearing DCs, limiting the ability of these DCs to activate CD4+ and CD8+ T cells. Taken togther these data define conditions for the generation of TCM and TEM cells and define an inflammatory pathway of effector T cell migration in lymph nodes. The inducible recruitment of blood-borne effector and TEM CD8+ cells to lymph nodes may represent a mechanism for terminating primary and limiting secondary immune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hybridoma cell line ZAC3 expresses Vibrio cholerae lipopolysaccharide (LPS)-specific mouse IgA molecules as a heterogeneous population of monomeric (IgAm), dimeric (IgAd), and polymeric (IgAp) forms. We describe a gentle method combining ultrafiltration, ion-exchange chromatography, and size exclusion chromatography for the simultaneous and qualitative separation of the three molecular forms. Milligram quantities of purified IgA molecules were recovered allowing for direct comparison of the biological properties of the three forms. LPS binding specificity was tested after purification; IgAd and IgAp were found to bind strongly to LPS whereas IgAm did not. Secretory IgA (sIgA) could be reconstituted in vitro by combining recombinant secretory component (rSC) and purified IgAd or IgAp, but not IgAm. Surface plasmon resonance-based binding experiments using LPS monolayers indicated that purified reconstituted sIgA and IgA molecules recognize LPS with identical affinity (KA 1.0 x 10(8)M-1). Thus, this very sensitive assay provides the first evidence that the function of SC in sIgA complex is not to modify the affinity for the antigen. KA falls to 6.6 x 10(5) M-1 when measured by calorimetry using detergent-solubilized LPS and IgA, suggesting that the LPS environment is critical for recognition by the antibody.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naturally acquired immune responses against human cancers often include CD8(+) T cells specific for the cancer testis antigen NY-ESO-1. Here, we studied T cell receptor (TCR) primary structure and function of 605 HLA-A*0201/NY-ESO-1(157-165)-specific CD8 T cell clones derived from five melanoma patients. We show that an important proportion of tumor-reactive T cells preferentially use TCR AV3S1/BV8S2 chains, with remarkably conserved CDR3 amino acid motifs and lengths in both chains. All remaining T cell clones belong to two additional sets expressing BV1 or BV13 TCRs, associated with alpha-chains with highly diverse VJ usage, CDR3 amino acid sequence, and length. Yet, all T cell clonotypes recognize tumor antigen with similar functional avidity. Two residues, Met-160 and Trp-161, located in the middle region of the NY-ESO-1(157-165) peptide, are critical for recognition by most of the T cell clonotypes. Collectively, our data show that a large number of alphabeta TCRs, belonging to three distinct sets (AVx/BV1, AV3/BV8, AVx/BV13) bind pMHC with equal antigen sensitivity and recognize the same peptide motif. Finally, this in-depth study of recognition of a self-antigen suggests that in part similar biophysical mechanisms shape TCR repertoires toward foreign and self-antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor progression is facilitated by regulatory T cells (Treg) and restricted by effector T cells. In this study, we document parallel regulation of CD8(+) T cells and Foxp3(+) Tregs by programmed death-1 (PD-1, PDCD1). In addition, we identify an additional role of CTL antigen-4 (CTLA-4) inhibitory receptor in further promoting dysfunction of CD8(+) T effector cells in tumor models (CT26 colon carcinoma and ID8-VEGF ovarian carcinoma). Two thirds of CD8(+) tumor-infiltrating lymphocytes (TIL) expressed PD-1, whereas one third to half of CD8(+) TIL coexpressed PD-1 and CTLA-4. Double-positive (PD-1(+)CTLA-4(+)) CD8(+) TIL had characteristics of more severe dysfunction than single-positive (PD-1(+) or CTLA-4(+)) TIL, including an inability to proliferate and secrete effector cytokines. Blockade of both PD-1 and CTLA-4 resulted in reversal of CD8(+) TIL dysfunction and led to tumor rejection in two thirds of mice. Double blockade was associated with increased proliferation of antigen-specific effector CD8(+) and CD4(+) T cells, antigen-specific cytokine release, inhibition of suppressive functions of Tregs, and upregulation of key signaling molecules critical for T-cell function. When used in combination with GVAX vaccination (consisting of granulocyte macrophage colony-stimulating factor-expressing irradiated tumor cells), inhibitory pathway blockade induced rejection of CT26 tumors in 100% of mice and ID8-VEGF tumors in 75% of mice. Our study indicates that PD-1 signaling in tumors is required for both suppressing effector T cells and maintaining tumor Tregs, and that PD-1/PD-L1 pathway (CD274) blockade augments tumor inhibition by increasing effector T-cell activity, thereby attenuating Treg suppression. Cancer Res; 73(12); 3591-603. ©2013 AACR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are intracellular proteins mainly involved in pathogen recognition, inflammatory responses, and cell death. Until recently, the function of the family member NLR caspase recruitment domain (CARD) containing 5 (NLRC5) has been a matter of debate. It is now clear that NLRC5 acts as a transcriptional regulator of the major-histocompatibility complex class I. In this review we detail the development of our understanding of NLRC5 function, discussing both the accepted and the controversial aspects of NLRC5 activity. We give insight into the molecular mechanisms, and the potential implications, of NLRC5 function in health and disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate target mRNAs by binding to their 3' untranslated regions. There is growing evidence that microRNA-155 (miR155) modulates gene expression in various cell types of the immune system and is a prominent player in the regulation of innate and adaptive immune responses. To define the role of miR155 in dendritic cells (DCs) we performed a detailed analysis of its expression and function in human and mouse DCs. A strong increase in miR155 expression was found to be a general and evolutionarily conserved feature associated with the activation of DCs by diverse maturation stimuli in all DC subtypes tested. Analysis of miR155-deficient DCs demonstrated that miR155 induction is required for efficient DC maturation and is critical for the ability of DCs to promote antigen-specific T-cell activation. Expression-profiling studies performed with miR155(-/-) DCs and DCs overexpressing miR155, combined with functional assays, revealed that the mRNA encoding the transcription factor c-Fos is a direct target of miR155. Finally, all of the phenotypic and functional defects exhibited by miR155(-/-) DCs could be reproduced by deregulated c-Fos expression. These results indicate that silencing of c-Fos expression by miR155 is a conserved process that is required for DC maturation and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thymocytes and class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes express predominantly heterodimeric alpha/beta CD8. By interacting with non-polymorphic regions of MHC class I molecules CD8 can mediate adhesion or by binding the same MHC molecules that interact with the T-cell antigen receptor (TCR) function as coreceptor in TCR-ligand binding and T-cell activation. Using TCR photoaffinity labelling with a soluble, monomeric photoreactive H-2Kd-peptide derivative complex, we report here that the avidity of TCR-ligand interactions on cloned cytotoxic T cells is very greatly strengthened by CD8. This is primarily explained by coordinate binding of ligand molecules by CD8 and TCR, because substitution of Asp 227 of Kd with Lys severely impaired the TCR-ligand binding on CD8+, but not CD8- cells. Kinetic studies on CD8+ and CD8- cells further showed that CD8 imposes distinct dynamics and a remarkable temperature dependence on TCR-ligand interactions. We propose that the ability of CD8 to act as coreceptor can be modulated by CD8-TCR interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CD8alphabeta heterodimer is integral to the selection of the class I-restricted lineage in the thymus; however, the contribution of the CD8beta chain to coreceptor function is poorly understood. To understand whether the CD8beta membrane proximal stalk region played a role in coreceptor function, we substituted it with the corresponding sequence from the CD8alpha polypeptide and expressed the hybrid molecule in transgenic mice in place of endogenous CD8beta. Although the stalk-swapped CD8beta was expressed on the cell surface as a disulfide-bonded heterodimer at equivalent levels of expression to an endogenous CD8beta molecule, it failed to restore selection of CD8(+) class I MHC-restricted T cells and it altered the response of peripheral T cells. Thus, the stalk region of the CD8beta polypeptide has an essential role in ensuring functionality of the CD8alphabeta heterodimer and its replacement compromises the interaction of CD8 with peptide-MHC complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8(+) T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8(+) T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although melanoma vaccines stimulate tumor antigen-specific CD8(+) T cells, objective clinical responses are rarely observed. To investigate this discrepancy, we evaluated the character of vaccine-induced CD8(+) T cells with regard to the inhibitory T-cell coreceptors PD-1 and Tim-3 in patients with metastatic melanoma who were administered tumor vaccines. The vaccines included incomplete Freund's adjuvant, CpG oligodeoxynucleotide (CpG), and the HLA-A2-restricted analog peptide NY-ESO-1 157-165V, either by itself or in combination with the pan-DR epitope NY-ESO-1 119-143. Both vaccines stimulated rapid tumor antigen-specific CD8(+) T-cell responses detected ex vivo, however, tumor antigen-specific CD8(+) T cells produced more IFN-γ and exhibited higher lytic function upon immunization with MHC class I and class II epitopes. Notably, the vast majority of vaccine-induced CD8(+) T cells upregulated PD-1 and a minority also upregulated Tim-3. Levels of PD-1 and Tim-3 expression by vaccine-induced CD8(+) T cells at the time of vaccine administration correlated inversely with their expansion in vivo. Dual blockade of PD-1 and Tim-3 enhanced the expansion and cytokine production of vaccine-induced CD8(+) T cells in vitro. Collectively, our findings support the use of PD-1 and Tim-3 blockades with cancer vaccines to stimulate potent antitumor T-cell responses and increase the likelihood of clinical responses in patients with advanced melanoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In intestinal secretions, secretory IgA (SIgA) plays an important sentinel and protective role in the recognition and clearance of enteric pathogens. In addition to serving as a first line of defense, SIgA and SIgA x antigen immune complexes are selectively transported across Peyer's patches to underlying dendritic cells in the mucosa-associated lymphoid tissue, contributing to immune surveillance and immunomodulation. To explain the unexpected transport of immune complexes in face of the large excess of free SIgA in secretions, we postulated that SIgA experiences structural modifications upon antigen binding. To address this issue, we associated specific polymeric IgA and SIgA with antigens of various sizes and complexity (protein toxin, virus, bacterium). Compared with free antibody, we found modified sensitivity of the three antigens assayed after exposure to proteases from intestinal washes. Antigen binding further impacted on the immunoreactivity toward polyclonal antisera specific for the heavy and light chains of the antibody, as a function of the antigen size. These conformational changes promoted binding of the SIgA-based immune complex compared with the free antibody to cellular receptors (Fc alphaRI and polymeric immunoglobulin receptor) expressed on the surface of premyelocytic and epithelial cell lines. These data reveal that antigen recognition by SIgA triggers structural changes that confer to the antibody enhanced receptor binding properties. This identifies immune complexes as particular structural entities integrating the presence of bound antigens and adds to the known function of immune exclusion and mucus anchoring by SIgA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Memory T cells exert antigen-independent effector functions, but how these responses are regulated is unclear. We discovered an in vivo link between flagellin-induced NLRC4 inflammasome activation in splenic dendritic cells (DCs) and host protective interferon-γ (IFN-γ) secretion by noncognate memory CD8(+) T cells, which could be activated by Salmonella enterica serovar Typhimurium, Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that CD8α(+) DCs were particularly efficient at sensing bacterial flagellin through NLRC4 inflammasomes. Although this activation released interleukin 18 (IL-18) and IL-1β, only IL-18 was required for IFN-γ production by memory CD8(+) T cells. Conversely, only the release of IL-1β, but not IL-18, depended on priming signals mediated by Toll-like receptors. These findings provide a comprehensive mechanistic framework for the regulation of noncognate memory T cell responses during bacterial immunity.