928 resultados para ant-plants
Resumo:
Many examples of extreme virus resistance and posttranscriptional gene silencing of endogenous or reporter genes have been described in transgenic plants containing sense or antisense transgenes. In these cases of either cosuppression or antisense suppression, there appears to be induction of a surveillance system within the plant that specifically degrades both the transgene and target RNAs. We show that transforming plants with virus or reporter gene constructs that produce RNAs capable of duplex formation confer virus immunity or gene silencing on the plants. This was accomplished by using transcripts from one sense gene and one antisense gene colocated in the plant genome, a single transcript that has self-complementarity, or sense and antisense transcripts from genes brought together by crossing. A model is presented that is consistent with our data and those of other workers, describing the processes of induction and execution of posttranscriptional gene silencing.
Resumo:
RNA polymerase III (Pol III) as well as Pol II (35S) promoters are able to drive hairpin RNA (hpRNA) expression and induce target gene silencing in plants. siRNAs of 21 nt are the predominant species in a 35S Pol II line, whereas 24- and/or 22-nucleotide (nt) siRNAs are produced by a Pol III line. The 35S line accumulated the loop of the hpRNA, in contrast to full-length hpRNA in the Pol III line. These suggest that Pol II and Pol III-transcribed hpRNAs are processed by different pathways. One Pol III transgene produced only 24-nt siRNAs but silenced the target gene efficiently, indicating that the 24-nt siRNAs can direct mRNA degradation; specific cleavage was confirmed by 59 rapid amplification of cDNA ends (RACE). Both Pol II- and Pol III-directed hpRNA transgenes induced cytosine methylation in the target DNA. The extent of methylation is not correlated with the level of 21-nt siRNAs, suggesting that they are not effective inducers of DNA methylation. The promoter of a U6 transgene was significantly methylated, whereas the promoter of the endogenous U6 gene was almost free of cytosine methylation, suggesting that endogenous sequences are more resistant to de novo DNA methylation than are transgene constructs. Published by Cold Spring Harbor Laboratory Press. Copyright © 2008 RNA Society.
Resumo:
Tobacco plants were transformed with a chimeric transgene comprising sequences encoding β-glucuronidase (GUS) and the satellite RNA (satRNA) of cereal yellow dwarf luteovirus. When transgenic plants were infected with potato leafroll luteovirus (PLRV), which replicated the transgene-derived satRNA to a high level, the satellite sequence of the GUS:Sat transgene became densely methylated. Within the satellite region, all 86 cytosines in the upper strand and 73 of the 75 cytosines in the lower strand were either partially or fully methylated. In contrast, very low levels of DNA methylation were detected in the satellite sequence of the transgene in uninfected plants and in the flanking nonsatellite sequences in both infected and uninfected plants. Substantial amounts of truncated GUS:Sat RNA accumulated in the satRNA-replicating plants, and most of the molecules terminated at nucleotides within the first 60 bp of the satellite sequence. Whereas this RNA truncation was associated with high levels of satRNA replication, it appeared to be independent of the levels of DNA methylation in the satellite sequence, suggesting that it is not caused by methylation. All the sequenced GUS:Sat DNA molecules were hypermethylated in plants with replicating satRNA despite the phloem restriction of the helper PLRV. Also, small, sense and antisense ∼22 nt RNAs, derived from the satRNA, were associated with the replicating satellite. These results suggest that the sequence-specific DNA methylation spread into cells in which no satRNA replication occurred and that this was mediated by the spread of unamplified satRNA and/or its associated 22 nt RNA molecules.
Resumo:
RNA interference (RNAi) is widely used to silence genes in plants and animals. It operates through the degradation of target mRNA by endonuclease complexes guided by approximately 21 nucleotide (nt) short interfering RNAs (siRNAs). A similar process regulates the expression of some developmental genes through approximately 21 nt microRNAs. Plants have four types of Dicer-like (DCL) enzyme, each producing small RNAs with different functions. Here, we show that DCL2, DCL3 and DCL4 in Arabidopsis process both replicating viral RNAs and RNAi-inducing hairpin RNAs (hpRNAs) into 22-, 24- and 21 nt siRNAs, respectively, and that loss of both DCL2 and DCL4 activities is required to negate RNAi and to release the plant's repression of viral replication. We also show that hpRNAs, similar to viral infection, can engender long-distance silencing signals and that hpRNA-induced silencing is suppressed by the expression of a virus-derived suppressor protein. These findings indicate that hpRNA-mediated RNAi in plants operates through the viral defence pathway.
Resumo:
RNA silencing has become a major focus of molecular biology and biomedical research around the world. This is highlighted by a simple PubMed search for “RNA silencing,” which retrieves almost 9,000 articles. Interest in gene silencing-related mechanisms stemmed from the early 1990s, when this phenomenon was first noted as a surprise observation by plant scientists during the course of plant transformation experiments, in which the introduction of a transgene into the genome led to the silencing of both the transgene and homologous endogenes. From these initial studies, plant biologists have continued to generate a wealth of information into not only gene silencing mechanisms but also the complexity of these biological pathways as well as revealing their multilevel interactions with one another. The plant biology community has also made significant advancements in exploiting RNA silencing as a powerful tool for gene function studies and crop improvements. In this article, we (1) review the rich history of gene silencing research and the knowledge it has generated into our understanding of this fundamental mechanism of gene regulation in plants; (2) describe examples of the current applications of RNA silencing in crop plants; and (3) discuss improvements in RNA silencing technology and its potential application in plant science.
Resumo:
Post-transcriptional control of gene expression has gone from a curiosity involving a few special genes to a highly diverse and widespread set of processes that is truly pervasive in plant gene expression. Thus, Plant Cell readers interested in almost any aspect of plant gene expression in response to any environmental influence, or in development, are advised to read on. In May 2001, what has become the de facto third biennial Symposium on Post-Transcriptional Control of Gene Expression in Plants was held in Ames, Iowa. The meeting was hosted by the new Plant Sciences Institute of Iowa State University with additional funding from the National Science Foundation and the United States Department of Agriculture. In 1997, the annual University of California-Riverside Plant Physiology Symposium was devoted to this topic. This provided a wake-up call to the plant world, summarized in this journal (Gallie and Bailey-Serres, 1997), that not all gene expression is controlled at the level of transcription. This was expanded upon at a European Molecular Biology Organization Workshop in Leysin, Switzerland, in 1999 (Bailey-Serres et al., 1999). The 3-day meeting in Ames brought together a strong and diverse contingent of plant biologists from four continents. The participants represented an unusually heterogeneous group of disciplines ranging from virology to stress response to computational biology. The research approaches and techniques represented were similarly diverse. Here we discuss a sample of the many fascinating aspects of post-transcriptional control that were presented at this meeting; we apologize to those whose work is not described here.
Resumo:
RNA interference induced in insects after ingestion of plant-expressed hairpin RNA offers promise for managing devastating crop pests
Resumo:
Interest in insect small RNA viruses (SRVs) has grown slowly but steadily. A number of new viruses have been analyzed at the sequence level, adding to our knowledge of their diversity at the level of both individual virus species and families. In particular, a number of possible new virus families have emerged. This research has largely been driven by interest in their potential for pest control, as well as in their importance as the causal agents of disease in beneficial arthropods. At the same time, research into known viruses has made valuable contributions to our understanding of an emerging new field of central importance to molecular biology-the existence of RNA-based gene silencing, developmental control, and adaptive immune systems in eukaryotes. Subject to RNA-based adaptive immune responses in their hosts, viruses have evolved a variety of genes encoding proteins capable of suppressing the immune response. Such genes were first identified in plant viruses, but the first examples known from animal viruses were identified in insect RNA viruses. This chapter will address the diversity of insect SRVs, and attempts to harness their simplicity in the engineering of transgenic plants expressing viruses for resistance to insect pests. We also describe RNA interference and antiviral pathways identified in plants and animals, how they have led viruses to evolve genes capable of suppressing such adaptive immunity, and the problems presented by these pathways for the strategy of expressing viruses in transgenic plants. Approaches for countering these problems are also discussed. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Double-stranded RNA (dsRNA) induces an endogenous sequence-specific RNA degradation mechanism in most eukaryotic cells. The mechanism can be harnessed to silence genes in plants by expressing self-complementary single-stranded (hairpin) RNA in which the duplexed region has the same sequence as part of the target gene's mRNA. We describe a number of plasmid vectors for generating hairpin RNAs, including those designed for high-throughput cloning, and provide protocols for their use.
Resumo:
A series of improved vectors have been constructed that are suitable for use in Agrobacterium tumefaciens-mediated monocot transformation. These binary vectors have several useful features, including the selectable marker genes bar (phosphinothricin resistance) or hph (hygromycin resistance) driven by either the cauliflower mosaic virus (CaMV) 35S promoter or the maize ubiquitin promoter, a high-copy-number replication origin that allows reliable mini-prep DNA isolation from Escherichia coli, and a polylinker sequence into which target genes can be easily inserted. A significant improvement has been made to the hph gene by the introduction of an intron into its coding region. The presence of the intron abolishes hph expression in A. tumefaciens, rendering the bacterium susceptible to the selective agent hygromycin B. The use of such an intron-hph vector thus enables the antibiotic in plant culture media to function as both a selective agent for transformed tissue and as a contraselective agent for A. tumefaciens growth, thus minimising the overgrowth of A. tumefaciens on plant tissues during transformation. Furthermore, the intron appears to be correctly spliced in plant cells and significantly enhances hph expression in transformed rice tissue. In our experiments, the use of the intron-hph vector increased the frequency of rice transformation and has enabled the production of transgenic barley.
Resumo:
The Yd2 gene for “resistance” to barley yellow dwarf virus (BYDV) has been widely used in barley (Hordeum vulgare). We have tested Australian isolates of BYDV of varying severity against barley genotypes with and without the Yd2 gene and report here a positive relationship between symptoms and virus levels determined by ELISA. Cultivar Shannon is the result of backcrossing the resistant line CI 3208 to cultivar Proctor, a susceptible line. It appears to be intermediate in reaction to BYDV between Proctor and CI 3208, although it carries the major gene, Yd2. Unlike the whole plant studies, no significant differences were observed with regard to the ability of protoplasts derived from these various genotypes to support BYDV replication. It is therefore demonstrated for the first time that the Yd2 gene is not among the small number of resistance genes which are effective against virus replication in isolated protoplasts.
Resumo:
RNA-mediated silencing in plants can spread from cell to cell and over a long distance, and such mobile silencing has been extensively studied in the past decade. However, major questions remain as to what is the exact nature of the mobile silencing signals, how the components of the RNA-directed DNA methylation pathway are involved, and why systemic spread of silencing has only been observed for transgenes but not endogenous genes. In this review, we provide an overview of the current knowledge on mobile gene silencing in plants and present a model where systemic silencing involves long nuclear RNA transcripts that serve as a template to amplify primary siRNA signals.
Resumo:
Recent studies of gene silencing in plants have revealed two RNA-mediated epigenetic processes, RNA-directed RNA degradation and RNA-directed DNA methylation. These natural processes have provided new avenues for developing high-efficiency, high-throughput technology for gene suppression in plants.
Resumo:
Potato leafroll virus (PLRV) is a positive-strand RNA virus that generates subgenomic RNAs (sgRNA) for expression of 3' proximal genes. Small RNA (sRNA) sequencing and mapping of the PLRV-derived sRNAs revealed coverage of the entire viral genome with the exception of four distinctive gaps. Remarkably, these gaps mapped to areas of PLRV genome with extensive secondary structures, such as the internal ribosome entry site and 5' transcriptional start site of sgRNA1 and sgRNA2. The last gap mapped to ~500. nt from the 3' terminus of PLRV genome and suggested the possible presence of an additional sgRNA for PLRV. Quantitative real-time PCR and northern blot analysis confirmed the expression of sgRNA3 and subsequent analyses placed its 5' transcriptional start site at position 5347 of PLRV genome. A regulatory role is proposed for the PLRV sgRNA3 as it encodes for an RNA-binding protein with specificity to the 5' of PLRV genomic RNA. © 2013.