71 resultados para angiotensinogen


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To elucidate the local formation of angiotensin II (Ang II) in the neurons of sensory dorsal root ganglia (DRG), we studied the expression of angiotensinogen (Ang-N)-, renin-, angiotensin converting enzyme (ACE)- and cathepsin D-mRNA, and the presence of protein renin, Ang II, Substance P and calcitonin gene-related peptide (CGRP) in the rat and human thoracic DRG. Quantitative real time PCR (qRT-PCR) studies revealed that rat DRG expressed substantial amounts of Ang-N- and ACE mRNA, while renin mRNA as well as the protein renin were untraceable. Cathepsin D-mRNA and cathepsin D-protein were detected in the rat DRG indicating the possibility of existence of pathways alternative to renin for Ang I formation. Angiotensin peptides were successfully detected with high performance liquid chromatography and radioimmunoassay in human DRG extracts. In situ hybridization in rat DRG confirmed additionally expression of Ang-N mRNA in the cytoplasm of numerous neurons. Intracellular Ang II staining could be shown in number of neurons and their processes in both the rat and human DRG. Interestingly we observed neuronal processes with angiotensinergic synapses en passant, colocalized with synaptophysin, within the DRG. In the DRG, we also identified by qRT-PCR, expression of Ang II receptor AT(1A) and AT(2)-mRNA while AT(1B)-mRNA was not traceable. In some neurons Substance P and CGRP were found colocalized with Ang II. The intracellular localization and colocalization of Ang II with Substance P and CGRP in the DRG neurons may indicate a participation and function of Ang II in the regulation of nociception. In conclusion, these results suggest that Ang II may be produced locally in the neurons of rat and human DRG and act as a neurotransmitter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contrast to the current belief that angiotensin II (Ang II) interacts with the sympathetic nervous system only as a circulating hormone, we document here the existence of endogenous Ang II in the neurons of rat and human sympathetic coeliac ganglia and their angiotensinergic innervation with mesenteric resistance blood vessels. Angiotensinogen - and angiotensin converting enzyme-mRNA were detected by using quantitative real time polymerase chain reaction in total RNA extracts of rat coeliac ganglia, while renin mRNA was untraceable. Cathepsin D, a protease responsible for cleavage beneath other substrates also angiotensinogen to angiotensin I, was successfully detected in rat coeliac ganglia indicating the possibility of existence of alternative pathways. Angiotensinogen mRNA was also detected by in situ hybridization in the cytoplasm of neurons of rat coeliac ganglia. Immunoreactivity for Ang II was demonstrated in rat and human coeliac ganglia as well as with mesenteric resistance blood vessels. By using confocal laser scanning microscopy we were able to demonstrate the presence of angiotensinergic synapses en passant along side of vascular smooth muscle cells. Our findings indicate that Ang II is synthesized inside the neurons of sympathetic coeliac ganglia and may act as an endogenous neurotransmitter locally with the mesenteric resistance blood vessels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To clarify the role of Angiotensin II (Ang II) in the sensory system and especially in the trigeminal ganglia, we studied the expression of angiotensinogen (Ang-N)-, renin-, angiotensin converting enzyme (ACE)- and cathepsin D-mRNA, and the presence of Ang II and substance P in the rat and human trigeminal ganglia. The rat trigeminal ganglia expressed substantial amounts of Ang-N- and ACE mRNA as determined by quantitative real time PCR. Renin mRNA was untraceable in rat samples. Cathepsin D was detected in the rat trigeminal ganglia indicating the possibility of existence of pathways alternative to renin for Ang I formation. In situ hybridization in rat trigeminal ganglia revealed expression of Ang-N mRNA in the cytoplasm of numerous neurons. By using immunocytochemistry, a number of neurons and their processes in both the rat and human trigeminal ganglia were stained for Ang II. Post in situ hybridization immunocytochemistry reveals that in the rat trigeminal ganglia some, but not all Ang-N mRNA-positive neurons marked for Ang II. In some neurons Substance P was found colocalized with Ang II. Angiotensins from rat trigeminal ganglia were quantitated by radioimmunoassay with and without prior separation by high performance liquid chromatography. Immunoreactive angiotensin II (ir-Ang II) was consistently present and the sum of true Ang II (1-8) octapeptide and its specifically measured metabolites were found to account for it. Radioimmunological and immunocytochemical evidence of ir-Ang II in neuronal tissue is compatible with Ang II as a neurotransmitter. In conclusion, these results suggest that Ang II could be produced locally in the neurons of rat trigeminal ganglia. The localization and colocalization of neuronal Ang II with Substance P in the trigeminal ganglia neurons may be the basis for a participation and function of Ang II in the regulation of nociception and migraine pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Citrobacter rodentium is the rodent equivalent of human enteropathogenic Escherichia coli infection. This study investigated regulation of hepatic and renal cytochrome P450 (P450) mRNAs, hepatic P450 proteins, cytokines, and acute phase proteins during C. rodentium infection. Female C3H/HeOuJ (HeOu) and C3H/HeJ (HeJ) mice [which lack functional toll-like receptor 4 (TLR4)] were infected with C. rodentium by oral gavage and sacrificed 6 days later. Hepatic CYP4A10 and 4A14 mRNAs were decreased in HeOu mice (<4% of control). CYP3A11, 2C29, 4F14, and 4F15 mRNAs were reduced to 16 to 55% of control levels, whereas CYP2A5, 4F16, and 4F18 mRNAs were induced (180, 190, and 600% of control, respectively). The pattern of P450 regulation in HeJ mice was similar to that in HeOu mice for most P450s, with the exception of the TLR4 dependence of CYP4F15. Hepatic CYP2C, 3A, and 4A proteins in both groups were decreased, whereas CYP2E protein was not. Renal CYP4A10 and 4A14 mRNAs were significantly down-regulated in HeOu mice, whereas other P450s were unaffected. Most renal P450 mRNAs in infected HeJ mice were increased, notably CYP4A10, 4A14, 4F18, 2A5, and 3A13. Hepatic levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor alpha (TNFalpha) mRNAs were significantly increased in infected HeOu mice, whereas only TNFalpha mRNA was significantly increased in HeJ mice. Hepatic alpha1-acid glycoprotein was induced in both groups, whereas alpha-fibrinogen and angiotensinogen were unchanged. These data indicate that hepatic inflammation induced by C. rodentium infection is mainly TLR4-independent and suggest that hepatic P450 down-regulation in this model may be cytokine-mediated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. Essential hypertension affects 25% of the US adult population and is a leading contributor to morbidity and mortality. Because BP is a multifactorial phenotype that resists simple genetic analysis, intermediate phenotypes within the complex network of BP regulatory systems may be more accessible to genetic dissection. The Renin-Angiotensin System (RAS) is known to influence intermediate and long-term blood pressure regulation through alterations in vascular tone and renal sodium and fluid resorption. This dissertation examines associations between renin (REN), angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin II type 1 receptor (AT1) gene variation and interindividual differences in plasma hormone levels, renal hemodynamics, and BP homeostasis.^ Methods. A total of 150 unrelated men and 150 unrelated women, between 20.0 and 49.9 years of age and free of acute or chronic illness except for a history of hypertension (11 men and 7 women, all off medications), were studied after one week on a controlled sodium diet. RAS plasma hormone levels, renal hemodynamics and BP were determined prior to and during angiotensin II (Ang II) infusion. Individuals were genotyped by PCR for a variable number tandem repeat (VNTR) polymorphism in REN, and for the following restriction fragment length polymorphisms (RFLP): AGT M235T, ACE I/D, and AT1 A1166C. Associations between clinical measurements and allelic variation were examined using multiple linear regression statistical models.^ Results. Women homozygous for the AT1 1166C allele demonstrated higher intracellular levels of sodium (p = 0.044). Men homozygous for the AGT T235 allele demonstrated a blunted decrement in renal plasma flow in response to Ang II infusion (p = 0.0002). There were no significant associations between RAS gene variation and interindividual variation in RAS plasma hormone levels or BP.^ Conclusions. Rather than identifying new BP controlling genes or alleles, the study paradigm employed in this thesis (i.e., measured genes, controlled environments and interventions) may provide mechanistic insight into how candidate genes affect BP homeostasis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Renin-Angiotensin system (RAS) regulates blood pressure through its effects on vascular tone, renal hemodynamics, and renal sodium and fluid balance. The genes encoding the four major components of the RAS, angiotensinogen, renin, angiotensin I-converting enzyme (ACE), and angiotensin II receptor type 1 (AT1), have been investigated as candidate genes in the pathogenesis of essential hypertension. However, studies have primarily focused on small samples of diseased individuals, and, therefore, have provided little information about the determinants of interindividual variation in blood pressure (BP) in the general population.^ Using data from a large population-based sample from Rochester, MN, I have evaluated the contribution of variation in the region of the RAS genes to interindividual variation in systolic, diastolic, and mean arterial pressure in the population-at-large. Marker genotype data from four polymorphisms located within or very near these genes were first collected on 3,974 individuals from 583 randomly ascertained three-generation pedigrees. Haseman-Elston regression and variance component methods of linkage analysis were then carried out to estimate the proportion of interindividual variance in BP attributable to the effects of variation at these four measured loci.^ A significant effect of the ACE locus on interindividual variation in mean arterial pressure (MAP) was detected in a sample of siblings belonging to the youngest generation. After allowing for measured covariates, this effect accounted for 15-25% of the interindividual variance in MAP, and was even greater in a subset with a positive family history of hypertension. When gender-specific analyses were carried out, this effect was significant in males but not in females. Extended pedigree analyses also provided evidence for an effect of the ACE locus on interindividual variation in MAP, but no difference between males and females was observed. Circumstantial evidence suggests that the ACE gene itself may be responsible for the observed effects on BP, although the possibility that other genes in the region may be at play cannot be excluded.^ No definitive evidence for an effect of the renin, angiotensinogen, or AT1 loci on interindividual variation in BP was obtained in this study, suggesting that the impact of these genes on BP may not be great in the Caucasian population-at-large. However, this does not preclude a larger effect of these genes in some subsets of individuals, especially among those with clinically manifest hypertension or coronary heart disease, or in other populations. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overactivity of the brain renin-angiotensin system (RAS) has been implicated in the development and maintenance of hypertension in several experimental models, such as spontaneously hypertensive rats and transgenic mice expressing both human renin and human angiotensinogen transgenes. We recently reported that, in the murine brain, angiotensin II (AngII) is converted to angiotensin III (AngIII) by aminopeptidase A (APA), whereas AngIII is inactivated by aminopeptidase N (APN). If injected into cerebral ventricles (ICV), AngII and AngIII cause similar pressor responses. Because AngII is metabolized in vivo into AngIII, the exact nature of the active peptide is not precisely determined. Here we report that, in rats, ICV injection of the selective APA inhibitor EC33 [(S)-3-amino-4-mercaptobutyl sulfonic acid] blocked the pressor response of exogenous AngII, suggesting that the conversion of AngII to AngIII is required to increase blood pressure (BP). Furthermore, ICV injection, but not i.v. injection, of EC33 alone caused a dose-dependent decrease in BP by blocking the formation of brain but not systemic AngIII. This is corroborated by the fact that the selective APN inhibitor, PC18 (2-amino-4-methylsulfonyl butane thiol), administered alone via the ICV route, increases BP. This pressor response was blocked by prior treatment with the angiotensin type 1 (AT1) receptor antagonist, losartan, showing that blocking the action of APN on AngIII metabolism leads to an increase in endogenous AngIII levels, resulting in BP increase, through interaction with AT1 receptors. These data demonstrate that AngIII is a major effector peptide of the brain RAS, exerting tonic stimulatory control over BP. Thus, APA, the enzyme responsible for the formation of brain AngIII, represents a potential central therapeutic target that justifies the development of APA inhibitors as central antihypertensive agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classically recognized functions of the renin–angiotensin system are mediated by type 1 (AT1) angiotensin receptors. Whereas man possesses a single AT1 receptor, there are two AT1 receptor isoforms in rodents (AT1A and AT1B) that are products of separate genes (Agtr1a and Agtr1b). We have generated mice lacking AT1B (Agtr1b −/−) and both AT1A and AT1B receptors (Agtr1a −/−Agtr1b −/−). Agtr1b −/− mice are healthy, without an abnormal phenotype. In contrast, Agtr1a −/−Agtr1b −/− mice have diminished growth, vascular thickening within the kidney, and atrophy of the inner renal medulla. This phenotype is virtually identical to that seen in angiotensinogen-deficient (Agt−/−) and angiotensin-converting enzyme-deficient (Ace −/−) mice that are unable to synthesize angiotensin II. Agtr1a −/−Agtr1b −/− mice have no systemic pressor response to infusions of angiotensin II, but they respond normally to another vasoconstrictor, epinephrine. Blood pressure is reduced substantially in the Agtr1a −/− Agtr1b −/− mice and following administration of an angiotensin converting enzyme inhibitor, their blood pressure increases paradoxically. We suggest that this is a result of interruption of AT2-receptor signaling. In summary, our studies suggest that both AT1 receptors promote somatic growth and maintenance of normal kidney structure. The absence of either of the AT1 receptor isoforms alone can be compensated in varying degrees by the other isoform. These studies reaffirm and extend the importance of AT1 receptors to mediate physiological functions of the renin–angiotensin system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac hypertrophy is associated with altered expression of the components of the cardiac renin-angiotensin system (RAS). While in vitro data suggest that local mechanical stimuli serve as important regulatory modulators of cardiac RAS activity, no in vivo studies have so far corroborated these observations. The aims of this study were to (i) examine the respective influence of local, mechanical versus systemic, soluble factors on the modulation of cardiac RAS gene expression in vivo; (ii) measure gene expression of all known components of the RAS simultaneously; and (iii) establish sequence information and an assay system for the RAS of the dog, one of the most important model organisms in cardiovascular research. We therefore examined a canine model of right ventricular hypertrophy and failure (RVHF) in which the right ventricle (RV) is hemodynamically loaded, the left ventricle (LV) is hemodynamically unloaded, while both are exposed to the same circulating milieu of soluble factors. Using specific competitive PCR assays, we found that RVHF was associated with significant increases in RV mRNA levels of angiotensin converting enzyme and angiotensin II type 2 receptor, and with significant decreases of RV expression of chymase and the angiotensin II type 1 receptor, while RV angiotensinogen and renin remained unchanged. All components remained unchanged in the LV. We conclude that (i) dissociated regional regulation of RAS components in RV and LV indicates modulation by local, mechanical, not soluble, systemic stimuli; (ii) components of the cardiac RAS are independently and differentially regulated; and (iii) opposite changes in the expression of angiotensin converting enzyme and chymase, and of angiotensin II type I and angiotensin II type 2 receptors, may indicate different physiological roles of these RAS components in RVHF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertension is a common trait of multifactorial determination imparting an increased risk of myocardial infarction, stroke, and end-stage renal disease. The primary determinants of hypertension, as well as the factors which determine specific morbid sequelae, remain unknown in the vast majority of subjects. Knowledge that a large fraction of the interindividual variation in this trait is genetically determined motivates the application of genetic approaches to the identification of these primary determinants. Success in this effort will afford insights into pathophysiology, permit preclinical identification of subjects with specific inherited susceptibility, and provide opportunities to tailor therapy to specific underlying abnormalities. To date, mutations in three genes have been implicated in the pathogenesis of human hypertension: mutations resulting in ectopic expression of aldosterone synthase enzymatic activity cause a mendelian form of hypertension known as glucocorticoid-remediable aldosteronism; mutations in the beta subunit of the amiloride-sensitive epithelial sodium channel cause constitutive activation of this channel and the mendelian form of hypertension known as Liddle syndrome; finally, common variants at the angiotensinogen locus have been implicated in the pathogenesis of essential hypertension in Caucasian subjects, although the nature of the functional variants and their mechanism of action remain uncertain. These early findings demonstrate the feasibility and utility of the application of genetic analysis to dissection of this trait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aims: Insulin resistance and systemic hypertension are predictors of advanced fibrosis in obese patients with non-alcoholic fatty liver disease (NAFLD). Genetic factors may also be important. We hypothesize that high angiotensinogen (AT) and transforming growth factor-beta1 (TGF-beta1) producing genotypes increase the risk of liver fibrosis in obese subjects with NAFLD. Methods: One hundred and five of 130 consecutive severely obese patients having a liver biopsy at the time of laparoscopic obesity surgery agreed to have genotype analysis. Influence of specific genotype or combination of genotypes on the stage of hepatic fibrosis was assessed after controlling for known risk factors. Results: There was no fibrosis in 70 (67%), stages 1-2 in 21 (20%) and stages 3-4 fibrosis in 14 (13%) of subjects. There was no relationship between either high AT or TGF-beta1 producing genotypes alone and hepatic fibrosis after controlling for confounding factors. However, advanced hepatic fibrosis occurred in five of 13 subjects (odds ratio 5.7, 95% confidence interval 1.5-21.2, P = 0.005) who inherited both high AT and TGF-beta1 producing polymorphisms. Conclusions: The combination of high AT and TGF-beta1 producing polymorphisms is associated with advanced hepatic fibrosis in obese patients with NAFLD. These findings support the hypothesis that angiotensin II stimulated TGF-beta1 production may promote hepatic fibrosis. (C) 2003 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.