985 resultados para aluminum casthouse metal flow


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A material model for more thorough analysis of plastic deformation of sheet materials is presented in this paper. This model considers the following aspects of plastic deformation behavior of sheet materials: (1) the anisotropy in yield stresses and in work hardening by using Hill's 1948 quadratic yield function and non-constant stress ratios which leads to different flow stress hardening in different directions, (2) the anisotropy in plastic strains by using a quadratic plastic potential function and non-associated flow rule, also based on Hill's 1948 model and r-values, and (3) the cyclic hardening phenomena such as the Bauschinger effect, permanent softening and transient behavior for reverse loading by using a coupled nonlinear kinematic hardening model. Plasticity fundamentals of the model were derived in a general framework and the model calibration procedure was presented for the plasticity formulations. Also, a generic numerical stress integration procedure was developed based on backward-Euler method, so-called multi-stage return mapping algorithm. The model was implemented in the framework of the finite element method to evaluate the simulation results of sheet metal forming processes. Different aspects of the model were verified for two sheet metals, namely DP600 steel and AA6022 aluminum alloy. Results show that the new model is able to accurately predict the sheet material behavior for both anisotropic hardening and cyclic hardening conditions. The drawing of channel sections and the subsequent springback were also simulated with this model for different drawbead configurations. Simulation results show that the current non-associated anisotropic hardening model is able to accurately predict the sidewall curl in the drawn channel sections.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anisotropic mechanical behavior is investigated for an aluminum alloy of 6K21-IH T4 both in plastic deformation and ductile fracture. Anisotropic plastic deformation is characterized by uniaxial tensile tests of dog-bone specimens, while anisotropy in ductile fracture is illustrated with specimens with a central hole, notched specimens and shear specimens. All these specimens are cut off at every 15º from the rolling direction. The r-values and uniaxial tensile yield stresses are measured from the tensile tests of dog-bone specimens. Then the anisotropic plasticity is modeled by a newly proposed J2-J3 criterion under non-associate flow rule (non-AFR). The testing processes of specimens for ductile fracture analysis are simulated to extract the maximum plastic strain at fracture strokes as well as the evolution of the stress triaxiality and the Lode parameter in different testing directions. The measured fracture behavior is described by a shear-controlled ductile fracture criterion proposed by Lou et al. (2014. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int. J. Plasticity 54, 56-80) for different loading directions. It is demonstrated that the anisotropic plastic deformation is described by the J2-J3 criterion with high accuracy in various loading conditions including shear, uniaxial tension and plane strain tension. Moreover, the anisotropy in ductile fracture is not negligible and cannot be modeled by isotropic ductile fracture criteria. Thus, an anisotropic model must be proposed to accurately illustrate the directionality in ductile fracture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the development and optimization of an analytical procedure using ultrafiltration and a flow-injection system, and its application in in-situ experiments to characterize the lability and availability of metal species in humic-rich hydrocolloids. The on-line system consists of a tangential flow ultrafiltration device equipped with a 3-kDa filtration membrane. The concentration of free ions in the filtrate was determined by atomic-absorption spectrometry, assuming that metals not complexed by aquatic humic substances (AHS) were separated from the complexed species (M-AHS) retained by the membrane. For optimization, exchange experiments using Cu(II) solutions and AHS solutions doped with the metal ions Ni(II), Mn(II), Fe(III), Cd (II), and Zn(II) were carried out to characterize the stability of the metal-AHS complexes. The new procedure was then applied in-situ at a tributary of the Ribeira do Iguape river (Iguape, São Paulo State, Brazil) and evaluated using the ions Fe(III) and Mn(II), which are considered to be essential constituents of aquatic systems. From the exchange between metal-natural organic matter (M-NOM) and the Cu(II) ions it was concluded that Cu(II) concentrations > 485 mu g L(-1) were necessary to obtain maximum exchange of the complexes Mn-NOM and Fe-NOM, corresponding to 100% Mn and 8% Fe. Moreover, the new analytical procedure is simple and opens up new perspectives for understanding the complexation, transport, stability, and lability of metal species in humic-rich aquatic environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method based an ion exchange(IE)-atomic absorption spectrometry(AAS) coupled by flow techniques, allowing the determination of formation constants of, at least, the first species of complex systems, in aqueous solution, was developed.The IE-AAS coupling reduces significantly the number of experimental steps in comparison with IE batch methods, resulting in an important increase in analytical rate. The method is simple both from experimental and computational points of view, making possible its utilization by workers without special expertise in the field of complex equilibria in solution. on the other hand, taking into account mainly the amount of hollow cathode lamps available to date, the developed procedure may be applied, within certain limitations, to the study of many systems whose features prevent the use of traditional approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diffusive gradients in thin films (DGT) and tangential-flow ultrafiltration (TF-UF) were combined for fractionation of Al and Cu in river water containing high content of dissolved organic carbon. A procedure based on ultrafiltration data is proposed to determine diffusion coefficients of the analytes in water samples and model solutions containing both free metal (M) and complex (metal - humic substance). Aiming to evaluate the accuracy of the proposed approach, the DGT results were compared with those from a protocol for determination of labile Al and Cu based on solid phase extraction (SPE). Good agreement between data from DGT and SPE were attained for model solutions. For analysis of real organic-rich water samples, differences between DGT and SPE measurements were consistent with the time-scales of the techniques. The concentration of labile Al determined by DGT were lower than the total dissolved concentrations (determined by inductively coupled plasma mass spectrometry) and exceeded the ultrafiltered concentration, indicating that inorganic Al species (species small enough to pass through 1 kDa membrane) were minor species as compared with Al organic complexes. For both Al and Cu, there were species not measured by DGT as they are not sufficiently labile. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present work was to carry out experimental comparison between humic substances (HS) and representative α-amino acids (methionine, methionine sulfoxide and cysteine hydrochloride) in relation to the complexation of biologically active trace elements (Al, Cu, Pb, Mn, Zn, Cd and Ni). A mobile time-controlled tangential-flow UF technique was applied to differentiate between HS-metal and α-aminoacids-metal complexes. Metal determinations were conventionally carried out using a ICP-OES. The results showed that HS may be considered as a selective complexing agents with higher metal bonding capability in relation to Al, Cu and Pb, the fact that may be clinically important.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of shot particles on the high temperature, low cycle fatigue of a hybrid fiber/particulate metal-matrix composite (MMC) was studied. Two hybrid composites with the general composition A356/35%SiC particle/5%Fiber (one without shot) were tested. It was found that shot particles acting as stress concentrators had little effect on the fatigue performance. It appears that fibers with a high silica content were more likely to debond from the matrix. Final failure of the composite was found to occur preferentially in the matrix. SiC particles fracture progressively during fatigue testing, leading to higher stress in the matrix, and final failure by matrix overload. A continuum mechanics based model was developed to predict failure in fatigue based on the tensile properties of the matrix and particles. By accounting for matrix yielding and recovery, composite creep and particle strength distribution, failure of the composite was predicted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Chonta Mine (75º00’30” W & 13º04’30”S, 4495 to 5000 m absl), owned by Compañía Minera Caudalosa, operates a polymetallic Zn-Pb-Cu-Ag vein system of the low sulphidation epithermal type, hosted by cenozoic volcanics of dacitic to andesitic composition (Domos de Lava Formation). Veta Rublo, one of the main veins of the system, is worked underground to nearly 300 m. It strikes 60-80º NE and dips 60-70º SE; its width varies between 0.30 and 2.20m, and it crops out along 1 km, but is continued along strike by other veins, as Veta Caudalosa, for some 5 km. Typical metal contents are 7% Zn, 5% Pb, 0.4% Cu and 3 oz/t Ag, with quartz, sericite, sphalerite, galena, pyrite, chalcopyrite, fahlore as main minerals, and minor carbonate and sulphosalts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study has been made of the effects of welding and material variables on the occurrence of porosity in tungsten inert gas arc welding of copper. The experiments were based on a statistical design and variables included, welding current, welding speed, arc atmosphere composition, inert gas flow rate, weld preparation, and base material. The extent of weld metal porosity was assessed by density measurement and its morphology by X-ray radiography and metallography. In conjunction with this the copper-steam reaction has been investigated under conditions of controlled atmosphere arc melting. The welding experiments have shown that the extent of steam porosity is increased by increased water vapour content of the arc atmosphere, increased oxygen content of the base material and decreased welding speed. The arc melting experiments have shown that the steam reaction occurs in the body of the weld pool and proceeds to an apparent equi1ibrium state appropriate to to its temperature, the hydrogen and oxygen being supplied by the dissociation of water vapour in the arc atmosphere. It has been shown conclusively that nitrogen porosity can occur in the tungsten inert gas arc welding of copper and that this porosity can be eliminated by using filler wires containing small amounts of aluminum and titanium. Since it has been shown to be much more difficult to produce sound butt welds than melt runs it has been concluded that the porosity associated with joint fit up is due to nitrogen entrained into tho arc atmosphere. Clearly atmospheric entrainment would also, to a much lesser extent, involve water vapour. From a practical welding point of view it has thus been postulated that use of a filler wire containing small amounts of aluminum and/or titanium would eliminate both forms of porosity since these elements are both strongJy deoxidising and denitriding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The engineering of liquid behavior on surfaces is important for infrastructure, transportation, manufacturing, and sensing. Surfaces can be rendered superhydrophobic by microstructuring, and superhydrophobic devices could lead to practical corrosion inhibition, self-cleaning, fluid flow control, and surface drag reduction. To more fully understand how liquid interacts with microstructured surfaces, this dissertation introduces a direct method for determining droplet solid-liquid-vapor interfacial geometry on microstructured surfaces. The technique performs metrology on molten metal droplets deposited onto microstructured surfaces and then frozen. Unlike other techniques, this visualization technique can be used on large areas of curved and opaque microstructured surfaces to determine contact line. This dissertation also presents measurements and models for how curvature and flexing of microstructured polymers affects hydrophobicity. Increasing curvature of microstructured surfaces leads to decreased slide angle for liquid droplets suspended on the surface asperities. For a surface with regularly spaced asperities, as curvature becomes more positive, droplets suspended on the tops of asperities are suspended on fewer asperities. Curvature affects superhydrophobicity because microscopic curvature changes solid-liquid interaction, pitch is altered, and curvature changes the shape of the three phase contact line. This dissertation presents a model of droplet interactions with curved microstructured surfaces that can be used to design microstructure geometries that maintain the suspension of a droplet when curved surfaces are covered with microstructured polymers. Controlling droplet dynamics could improve microfluidic devices and the shedding of liquids from expensive equipment, preventing corrosion and detrimental performance. This dissertation demonstrates redirection of dynamic droplet spray with anisotropic microstructures. Superhydrophobic microstructured surfaces can be economically fabricated using metal embossing masters, so this dissertation describes casting-based microfabrication of metal microstructures and nanostructures. Low melting temperature metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. The flexibility of the silicone mold permits casting of curved surfaces, which this dissertation demonstrates by fabricating a cylindrical metal roller with microstructures. The metal microstructures can be in turn used as a reusable molding tool. This dissertation also describes an industrial investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast into curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square, and triangular holes. This dissertation demonstrates molding of large, curved surfaces having surface microstructures using the aluminum mold. This work contributes a more full understanding of the phenomenon of superhydrophobicity and techniques for the economic fabrication of superhydrophobic microstructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All relevant international standards for determining if a metallic rod is flammable in oxygen utilize some form of “promoted ignition” test. In this test, for a given pressure, an overwhelming ignition source is coupled to the end of the test sample and the designation flammable or nonflammable is based upon the amount burned, that is, a burn criteria. It is documented that (1) the initial temperature of the test sample affects the burning of the test sample both (a) in regards to the pressure at which the sample will support burning (threshold pressure) and (b) the rate at which the sample is melted (regression rate of the melting interface); and, (2) the igniter used affects the test sample by heating it adjacent to the igniter as ignition occurs. Together, these facts make it necessary to ensure, if a metallic material is to be considered flammable at the conditions tested, that the burn criteria will exclude any region of the test sample that may have undergone preheating during the ignition process. A two-dimensional theoretical model was developed to describe the transient heat transfer occurring and resultant temperatures produced within this system. Several metals (copper, aluminum, iron, and stainless steel) and ignition promoters (magnesium, aluminum, and Pyrofuze®) were evaluated for a range of oxygen pressures between 0.69 MPa (100 psia) and 34.5 MPa (5,000 psia). A MATLAB® program was utilized to solve the developed model that was validated against (1) a published solution for a similar system and (2) against experimental data obtained during actual tests at the National Aeronautics and Space Administration White Sands Test Facility. The validated model successfully predicts temperatures within the test samples with agreement between model and experiment increasing as test pressure increases and/or distance from the promoter increases. Oxygen pressure and test sample thermal diffusivity were shown to have the largest effect on the results. In all cases evaluated, there is no significant preheating (above about 38°C/100°F) occurring at distances greater than 30 mm (1.18 in.) during the time the ignition source is attached to the test sample. This validates a distance of 30 mm (1.18 in.) above the ignition promoter as a burn length upon which a definition of flammable can be based for inclusion in relevant international standards (that is, burning past this length will always be independent of the ignition event for the ignition promoters considered here. KEYWORDS: promoted ignition, metal combustion, heat conduction, thin fin, promoted combustion, burn length, burn criteria, flammability, igniter effects, heat affected zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In conventional fabrication of ceramic separation membranes, the particulate sols are applied onto porous supports. Major structural deficiencies under this approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We have overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using lager titanate nanofibers and smaller boehmite nanofibers. This yields a radical change in membrane texture. The resulting membranes effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. This reveals a new direction in membrane fabrication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m2·h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m2·h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.