934 resultados para allyl amine
Resumo:
A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.
Resumo:
In this work, several tertiary amine-based diaryl diselenides were synthesized and evaluated for their glutathione peroxidase (GPx)-like antioxidant activities using hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide as substrates and thiophenol (PhSH) and glutathione (GSH) as co-substrates. A comparison of the GPx-like activity of 4-methoxy-substituted N,N-dialkylbenzylamine-based diselenides with that of the corresponding 6-methoxy-substituted compounds indicates that the activity highly depends on the position of the methoxy substituent. Although the methoxy group at 4- and 6-position alters the electronic properties of selenium, the substitution at the 6-position provides the required steric protection for some of the key intermediates in the catalytic cycle. A detailed experimental and theoretical investigation reveals that the 6-methoxy substituent prevents the undesired thiol exchange reactions at the selenium centers in the selenenyl sulfide intermediates. The 6-methoxy substituent also prevents the formation of seleninic and selenonic acids. When PhSH is used as the thiol co-substrate, the 4-methoxy-substituted diselenides exhibit GPx-like activity similar to that of the parent compounds as the 4-methoxy substituent does not block the selenium center in the selenenyl sulfide intermediates from thiol exchange reactions. In contrast, the 4-methoxy substituent significantly enhances the GPx-like activity of the diselenides when glutathione (GSH) is used as the co-substrate. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An industrial base oil, a blend of different paraffin fractions, is heated to 130 degrees C (1) in the ambient and (2) for use as a lubricant in a steel pin on a steel disk sliding experiment. The base oil was tested with and without test antioxidants: dimethyl disulfide (DMDS) and alkylated diphenylamine (ADPA). Primary and secondary oxidation products were monitored continuously by FTIR over a 100 h period. In addition, friction and wear of the steel pin were monitored over the same period and the chemical transformation of the pin surface was monitored by XPS. The objective of this work is to observe the catalytic action of the steel components on the oil aging process and the efficacy of the antioxidant to reduce oxidation of oil used in tribology as a lubricant. Possible mechanistic explanations of the aging process as well as its impact on friction and wear are discussed.
Resumo:
Poly(epsilon-caprolactone) (PCL) is an aliphatic polyester widely used for biomedical applications but lacks the mechanical properties desired for many load-bearing orthopedic applications. The objective of this study was to prepare and characterize PCL composites incorporating multiwall carbon nanotubes (MWNTs) with different surface functional groups. PCL composites were prepared by melt-mixing with three different types of MWNTs: pristine (pMWNT), amine functionalized (aMWNT), and carboxyl functionalized (cMWNT). Melt rheology and scanning electron microscopy indicated good dispersion of the nanotubes in the matrix. Tensile strength and elastic modulus of the polymer was significantly increased by the incorporation of MWNTs and further enhanced by favorable interactions between PCL and aMWNTs. Thermal analysis revealed that MWNTs act as heterogeneous nucleation sites for crystallization of PCL and increase polymer crystallinity. Incorporation of functionalized MWNTs increased the surface water wettability of PCL. Osteoblast proliferation and differentiation was significantly enhanced on functionalized composites. aMWNT composites also exhibited the best bactericidal response. This study demonstrates that surface functionalization of MWNTs profoundly influences the properties of PCL and amine-functionalization offers the optimal combination of mechanical properties, osteogenesis and antimicrobial response. These results have important implications for designing nanocomposites for use in orthopedics.
Resumo:
The structure of the borate complex responsible for the enantiodifferentiation of amines using a previously reported three-component protocol has been established. The choice between an ion pair and an amine-coordinated complex with the N atom of the amine coordinated to the B atom is favored for the former structure based on the DFT-calculated B-11 NMR chemical shifts. In contrast to expectations, the anisotropies of the quadrupolar B-11 nucleus for the two structures were calculated to be indistinguishable with regard to their effect on the linewidth of the NMR signal. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Insertion reactions of six-membered cyclopalladated N,N',N''-triarylguanidines, kappa(2)(C,N)Pd(mu-Br)](2) with various alkynes in CH2Cl2 under ambient conditions afforded diinserted eight-membered palladacycles, (kappa(2)(C,N):eta(2)(C=C)-PdBr] (1-11), in high yield (76-96%), while insertion reactions of six-membered cyclopalladated N,N',N''-triarylguanidines, kappa(2)(C,N)Pd(Lewis base)Br] (VI-XI), with various alkynes under the aforementioned conditions afforded monoinserted six-membered palladacycles, kappa(2)(C,N)-Pd(Lewis base)Br] (12-21), in high yield (81-91%) except for 14 (23%). The insertion reaction of VI with 2 equiv of dimethyl acetylenedicarboxylate (DMAD) and the insertion reaction of 12 with 1 equiv of DMAD in CH2Cl2 under ambient conditions resulted in the formation of a diinserted zwitterionic five-membered palladacycle, kappa(2)(C,C)Pd(2,6-lutidine)Br] (22), in 76% and 70% yields, respectively. Palladacycle 22 upon reaction with AgOTf in wet MeCN afforded the ionic palladacycle kappa(2)(C,C)Pd(2,6-lutidine)(H2O)]OTf] (23) in 78% yield. The ring size of the ``kappa(2)(C,N)Pd]'' unit in the structurally characterized diinserted palladacycles (1 center dot 2CH(2)Cl(2)center dot H2O, 2, 5, and 7), and monoinserted palladacycles (17, 18, and 20 center dot C7H8 H2O) is smaller than that anticipated for mono- and diinserted palladacycles, and this feature is mainly ascribed to the proclivity of III-XI to undergo ring contraction cum amine-imine tautomerization upon alkyne insertion. Palladacycle 22 represents the first diinserted product obtained in alkyne insertion reactions of kappa(2)(C,N)Pd(Lewis base)X] type palladarycles. The molecular structure of 22 center dot H2O determined by X-ray diffraction indicates that the positive charge on the guanidinium moiety is balanced by the negative charge on the palladium atom and thus represents the first structurally characterized zwitterionic palladacycle to be reported in alkyne insertion chemistry. Plausible mechanisms of formation of 12-21 and 22 have been outlined. The presence of more than one species in solution for some of the palladacycles in the series 1-7 and 12-21 was explained by invoking the C-N single-bond rotation of the CN3 unit of the guanidine moiety, while this process in conjunction with Pd-N(lutidine) bond rotation was invoked to explain the presence of four isomers of 15, as studied with the aid of variable-concentration H-1 NMR experiments carried out for 14 and 15.
Resumo:
Photocatalytic disassembly of tertiary amine-based poly(propyl ether imine) dendrimers, in the presence of either 9,10-anthraquinone or riboflavin tetraacetate and O-2(g), leads to di- and tripropanolamine monomers. An application is shown by solubilisation of a water-insoluble dye, Sudan I, in aq. dendrimer solution ('catch'), followed by its `release' upon disassembly of the dendrimer.
Resumo:
In this study, various strategies like amine terminated GO (GO-NH2), in situ formed polyethylene grafted GO (PE-g-GO) and their combinations with maleated PE (maleic anhydride grafted PE) were adopted to reactively compatibilize blends of low density polyethylene (LDPE) and polyethylene oxide (PEO). These blends were further explored to design porous, antibacterial membranes for separation technology and the flux and the resistance across the membranes were studied systematically. It was observed that GO-NH2 led to uniform dispersion of PEO in a PE matrix and further resulted in a significant improvement in the mechanical properties of the blends when combined with maleated PE. The efficiency of various compatibilizers was further studied by monitoring the evolution of morphology as a function of the annealing time. It was observed that besides rendering uniform dispersion of PEO in PE and improving the mechanical properties, GO-NH2 further suppresses the coalescence in the blends. As the melt viscosities of the phases differ significantly, there is a gradient in the morphology as also manifested from scanning acoustic microscopy. Hence, the membranes were designed by systematically reducing the thickness of the as-pressed samples to expose the core as the active area for flux calculations. Selected membranes were also tested for their antibacterial properties by inoculating E. coli culture with the membranes and imaging at different time scales. This study opens new avenues to develop PE based cost effective anti-microbial membranes for water purification.
Resumo:
In this study, various strategies like amine terminated GO (GO-NH2), in situ formed polyethylene grafted GO (PE-g-GO) and their combinations with maleated PE (maleic anhydride grafted PE) were adopted to reactively compatibilize blends of low density polyethylene (LDPE) and polyethylene oxide (PEO). These blends were further explored to design porous, antibacterial membranes for separation technology and the flux and the resistance across the membranes were studied systematically. It was observed that GO-NH2 led to uniform dispersion of PEO in a PE matrix and further resulted in a significant improvement in the mechanical properties of the blends when combined with maleated PE. The efficiency of various compatibilizers was further studied by monitoring the evolution of morphology as a function of the annealing time. It was observed that besides rendering uniform dispersion of PEO in PE and improving the mechanical properties, GO-NH2 further suppresses the coalescence in the blends. As the melt viscosities of the phases differ significantly, there is a gradient in the morphology as also manifested from scanning acoustic microscopy. Hence, the membranes were designed by systematically reducing the thickness of the as-pressed samples to expose the core as the active area for flux calculations. Selected membranes were also tested for their antibacterial properties by inoculating E. coli culture with the membranes and imaging at different time scales. This study opens new avenues to develop PE based cost effective anti-microbial membranes for water purification.
Resumo:
An amine functionalized polyaniline (AMPANI) derivative has been grafted onto exfoliated graphite oxide (EGO). The synthesis involved the in-situ chemical oxidative polymerization of functionalized aniline monomer in the presence of EGO with diaminobenzene acting as a bridging ligand to yield EGAMPANI. The synthesized compound was characterized by FT-IR and FT-Raman spectroscopy as well as thermogravimetric and X-ray diffraction analysis. The EGAMPANI was then used to modify a carbon paste electrode (CPE), which was applied for multi-elemental sensing of Pb2+, Cd2+ and Hg2+ ions using differential pulse anodic stripping voltammetty. The limits of detection achieved using the EGAMPANI modified CPE were 22 x 10(-6) M for Hg2+ ion, 1.2 x 10(-6) M for Cd2+ ion and 9.8 x 10(-7) M for Pb2+ ion. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The use of spiro [2.4]hepta-4,6-diene-1-methanol 7 as a general precursor for the synthesis of highly functionalized cyclopentyl rings is described. Diene 7 was converted to its silyl protected 4-nitrile derivative 24 in 46% overall yield. The cyclopropyl ring of 24 reacted with soft carbanionic nucleophiles to give ring opened homo-conjugate addition products 25a-h in 76-97% yield without loss of optical purity. The addition products could be further manipulated by selective mono-hydrogenation to give 1,2 substituted cyclopentenes 26a-e in 85-96% yield.
Diene 7 was used as a starting material for studies directed toward the synthesis of the stereochemically dense chloro-cyclopentyl core of palau'amine 1. Two advanced intermediates 50 and 72 were synthesized. Attempts to effect intramolecular chlorine transfer with 50 were unsuccessful. Attempted intramolecular chlorine transfer with 72 led, instead, to an oxygenated species resulting from oxygen radical trapping.
The enantioselective synthesis of the stereochemically dense chloro-cyclopenty l core of axinellamines A-D 2-5 starting from 7 is also described. The core is synthesized in 4.6% yield over 24 steps. Nakamura's radical dehalogenative hydroxylation is applied for the first time to a cyclopropyl carbonyl iodide to give the ring-opened product in 86% yield. Bolm's meso-anhydride desymmetrization is used to introduce asymmetry in a norbornene intermediate. The final step is a diastereoselective intermolecular chlorination using Barton's methodology to achieve chlorine transfer in 76% yield.
Resumo:
Part I
Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.
The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.
Part II
The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.
Part III
An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.
Resumo:
The toxicity of methyl amine was studied by finding out its LC 50 values for Catla catla fingerlings. On the basis of LC 50 values, the harmless concentration of methyl amine was found to be 12.8 ppm. This indicates that methyl amine is fairly toxic to C. catla fingerlings and needs care for its disposal in aquatic environment.
Resumo:
A synthetic strategy for fabricating a dense amine functionalized self-assembled monolayer (SAM) on hydroxylated surfaces is presented. The assembly steps are monitored by X-ray photoelectron spectroscopy, Fourier transform infrared- attenuated total reflection, atomic force microscopy, variable angle spectroscopic ellipsometry, UV-vis surface spectroscopy, contact angle wettability, and contact potential difference measurements. The method applies alkylbromide-trichlorosilane for the fabrication of the SAM followed by surface transformation of the bromine moiety to amine by a two-step procedure: S(N)2 reaction that introduces the hidden amine, phthalimide, followed by the removal of the protecting group and exposing the free amine. The use of phthalimide moiety in the process enabled monitoring the substitution reaction rate on the surface (by absorption spectroscopy) and showed first-order kinetics. The simplicity of the process, nonharsh reagents, and short reaction time allow the use of such SAMs in molecular nanoelectronics applications, where complete control of the used SAM is needed. The different molecular dipole of each step of the process, which is verified by DFT calculations, supports the use of these SAMs as means to tune the electronic properties of semiconductors and for better synergism between SAMs and standard microelectronics processes and devices.
Resumo:
The growth of high quality AlGaAs by CBE bas been limited by the high levels of carbon and oxygen contamination. The use of alane based precursors offers a significant reduction in such contamination. We report for the first time the CBE growth of AlxGa1-xAs from triethylgallium, dimethylethylamine-alane and arsine, and compare with. growth from triethylgallium, trimethylamine-alane and arsine. Some preliminary results of work on the CBE growth of GaAs on silicon will also be reported.