260 resultados para algorithmic
Resumo:
Revenue management (RM) is a complicated business process that can best be described ascontrol of sales (using prices, restrictions, or capacity), usually using software as a tool to aiddecisions. RM software can play a mere informative role, supplying analysts with formatted andsummarized data who use it to make control decisions (setting a price or allocating capacity fora price point), or, play a deeper role, automating the decisions process completely, at the otherextreme. The RM models and algorithms in the academic literature by and large concentrateon the latter, completely automated, level of functionality.A firm considering using a new RM model or RM system needs to evaluate its performance.Academic papers justify the performance of their models using simulations, where customerbooking requests are simulated according to some process and model, and the revenue perfor-mance of the algorithm compared to an alternate set of algorithms. Such simulations, whilean accepted part of the academic literature, and indeed providing research insight, often lackcredibility with management. Even methodologically, they are usually awed, as the simula-tions only test \within-model" performance, and say nothing as to the appropriateness of themodel in the first place. Even simulations that test against alternate models or competition arelimited by their inherent necessity on fixing some model as the universe for their testing. Theseproblems are exacerbated with RM models that attempt to model customer purchase behav-ior or competition, as the right models for competitive actions or customer purchases remainsomewhat of a mystery, or at least with no consensus on their validity.How then to validate a model? Putting it another way, we want to show that a particularmodel or algorithm is the cause of a certain improvement to the RM process compared to theexisting process. We take care to emphasize that we want to prove the said model as the causeof performance, and to compare against a (incumbent) process rather than against an alternatemodel.In this paper we describe a \live" testing experiment that we conducted at Iberia Airlineson a set of flights. A set of competing algorithms control a set of flights during adjacentweeks, and their behavior and results are observed over a relatively long period of time (9months). In parallel, a group of control flights were managed using the traditional mix of manualand algorithmic control (incumbent system). Such \sandbox" testing, while common at manylarge internet search and e-commerce companies is relatively rare in the revenue managementarea. Sandbox testing has an undisputable model of customer behavior but the experimentaldesign and analysis of results is less clear. In this paper we describe the philosophy behind theexperiment, the organizational challenges, the design and setup of the experiment, and outlinethe analysis of the results. This paper is a complement to a (more technical) related paper thatdescribes the econometrics and statistical analysis of the results.
Resumo:
In this paper, we introduce the concept of dyadic pulsations as a measure of sustainability in online discussion groups. Dyadic pulsations correspond to new communication exchanges occurring between two participants in a discussion group. A group that continuously integrates new participants in the on-going conversation is characterized by a steady dyadic pulsation rhythm. On the contrary, groups that either pursue close conversation or unilateral communication have no or very little dyadic pulsations. We show on two examples taken from Usenet discussion groups, that dyadic pulsations permit to anticipate future bursts in response delay time which are signs of group discussion collapses. We discuss ways of making this measure resilient to spam and other common algorithmic production that pollutes real discussions
Resumo:
Species distribution modelling is central to both fundamental and applied research in biogeography. Despite widespread use of models, there are still important conceptual ambiguities as well as biotic and algorithmic uncertainties that need to be investigated in order to increase confidence in model results. We identify and discuss five areas of enquiry that are of high importance for species distribution modelling: (1) clarification of the niche concept; (2) improved designs for sampling data for building models; (3) improved parameterization; (4) improved model selection and predictor contribution; and (5) improved model evaluation. The challenges discussed in this essay do not preclude the need for developments of other areas of research in this field. However, they are critical for allowing the science of species distribution modelling to move forward.
Resumo:
A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local.
Resumo:
Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.
Resumo:
RÉSUMÉ Cette thèse porte sur le développement de méthodes algorithmiques pour découvrir automatiquement la structure morphologique des mots d'un corpus. On considère en particulier le cas des langues s'approchant du type introflexionnel, comme l'arabe ou l'hébreu. La tradition linguistique décrit la morphologie de ces langues en termes d'unités discontinues : les racines consonantiques et les schèmes vocaliques. Ce genre de structure constitue un défi pour les systèmes actuels d'apprentissage automatique, qui opèrent généralement avec des unités continues. La stratégie adoptée ici consiste à traiter le problème comme une séquence de deux sous-problèmes. Le premier est d'ordre phonologique : il s'agit de diviser les symboles (phonèmes, lettres) du corpus en deux groupes correspondant autant que possible aux consonnes et voyelles phonétiques. Le second est de nature morphologique et repose sur les résultats du premier : il s'agit d'établir l'inventaire des racines et schèmes du corpus et de déterminer leurs règles de combinaison. On examine la portée et les limites d'une approche basée sur deux hypothèses : (i) la distinction entre consonnes et voyelles peut être inférée sur la base de leur tendance à alterner dans la chaîne parlée; (ii) les racines et les schèmes peuvent être identifiés respectivement aux séquences de consonnes et voyelles découvertes précédemment. L'algorithme proposé utilise une méthode purement distributionnelle pour partitionner les symboles du corpus. Puis il applique des principes analogiques pour identifier un ensemble de candidats sérieux au titre de racine ou de schème, et pour élargir progressivement cet ensemble. Cette extension est soumise à une procédure d'évaluation basée sur le principe de la longueur de description minimale, dans- l'esprit de LINGUISTICA (Goldsmith, 2001). L'algorithme est implémenté sous la forme d'un programme informatique nommé ARABICA, et évalué sur un corpus de noms arabes, du point de vue de sa capacité à décrire le système du pluriel. Cette étude montre que des structures linguistiques complexes peuvent être découvertes en ne faisant qu'un minimum d'hypothèses a priori sur les phénomènes considérés. Elle illustre la synergie possible entre des mécanismes d'apprentissage portant sur des niveaux de description linguistique distincts, et cherche à déterminer quand et pourquoi cette coopération échoue. Elle conclut que la tension entre l'universalité de la distinction consonnes-voyelles et la spécificité de la structuration racine-schème est cruciale pour expliquer les forces et les faiblesses d'une telle approche. ABSTRACT This dissertation is concerned with the development of algorithmic methods for the unsupervised learning of natural language morphology, using a symbolically transcribed wordlist. It focuses on the case of languages approaching the introflectional type, such as Arabic or Hebrew. The morphology of such languages is traditionally described in terms of discontinuous units: consonantal roots and vocalic patterns. Inferring this kind of structure is a challenging task for current unsupervised learning systems, which generally operate with continuous units. In this study, the problem of learning root-and-pattern morphology is divided into a phonological and a morphological subproblem. The phonological component of the analysis seeks to partition the symbols of a corpus (phonemes, letters) into two subsets that correspond well with the phonetic definition of consonants and vowels; building around this result, the morphological component attempts to establish the list of roots and patterns in the corpus, and to infer the rules that govern their combinations. We assess the extent to which this can be done on the basis of two hypotheses: (i) the distinction between consonants and vowels can be learned by observing their tendency to alternate in speech; (ii) roots and patterns can be identified as sequences of the previously discovered consonants and vowels respectively. The proposed algorithm uses a purely distributional method for partitioning symbols. Then it applies analogical principles to identify a preliminary set of reliable roots and patterns, and gradually enlarge it. This extension process is guided by an evaluation procedure based on the minimum description length principle, in line with the approach to morphological learning embodied in LINGUISTICA (Goldsmith, 2001). The algorithm is implemented as a computer program named ARABICA; it is evaluated with regard to its ability to account for the system of plural formation in a corpus of Arabic nouns. This thesis shows that complex linguistic structures can be discovered without recourse to a rich set of a priori hypotheses about the phenomena under consideration. It illustrates the possible synergy between learning mechanisms operating at distinct levels of linguistic description, and attempts to determine where and why such a cooperation fails. It concludes that the tension between the universality of the consonant-vowel distinction and the specificity of root-and-pattern structure is crucial for understanding the advantages and weaknesses of this approach.
Resumo:
BACKGROUND: Since the emergence of diffusion tensor imaging, a lot of work has been done to better understand the properties of diffusion MRI tractography. However, the validation of the reconstructed fiber connections remains problematic in many respects. For example, it is difficult to assess whether a connection is the result of the diffusion coherence contrast itself or the simple result of other uncontrolled parameters like for example: noise, brain geometry and algorithmic characteristics. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we propose a method to estimate the respective contributions of diffusion coherence versus other effects to a tractography result by comparing data sets with and without diffusion coherence contrast. We use this methodology to assign a confidence level to every gray matter to gray matter connection and add this new information directly in the connectivity matrix. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that whereas we can have a strong confidence in mid- and long-range connections obtained by a tractography experiment, it is difficult to distinguish between short connections traced due to diffusion coherence contrast from those produced by chance due to the other uncontrolled factors of the tractography methodology.
Resumo:
PURPOSE: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. METHODS AND MATERIALS: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D(RPT)) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD(RPT) map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD(RPT). A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD(sum) to the spinal cord of a patient with a paraspinal tumor. RESULTS: The average voxel NTD(RPT) to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD(RPT) from RPT was 6.8 Gy. The combined therapy NTD(sum) to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD(sum) equal to the maximum tolerated dose of 50 Gy. CONCLUSIONS: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.
Resumo:
BACKGROUND: The proportion of surgery performed as a day case varies greatly between countries. Low rates suggest a large growth potential in many countries. Measuring the potential development of one day surgery should be grounded on a comprehensive list of eligible procedures, based on a priori criteria, independent of local practices. We propose an algorithmic method, using only routinely available hospital data to identify surgical hospitalizations that could have been performed as one day treatment. METHODS: Moving inpatient surgery to one day surgery was considered feasible if at least one surgical intervention was eligible for one day surgery and if none of the following criteria were present: intervention or affection requiring an inpatient stay, patient transferred or died, and length of stay greater than four days. The eligibility of a procedure to be treated as a day case was mainly established on three a priori criteria: surgical access (endoscopic or not), the invasiveness of the procedure and the size of the operated organ. Few overrides of these criteria occurred when procedures were associated with risk of immediate complications, slow physiological recovery or pain treatment requiring hospital infrastructure. The algorithm was applied to a random sample of one million inpatient US stays and more than 600 thousand Swiss inpatient stays, in the year 2002. RESULTS: The validity of our method was demonstrated by the few discrepancies between the a priori criteria based list of eligible procedures, and a state list used for reimbursement purposes, the low proportion of hospitalizations eligible for one day care found in the US sample (4.9 versus 19.4% in the Swiss sample), and the distribution of the elective procedures found eligible in Swiss hospitals, well supported by the literature. There were large variations of the proportion of candidates for one day surgery among elective surgical hospitalizations between Swiss hospitals (3 to 45.3%). CONCLUSION: The proposed approach allows the monitoring of the proportion of inpatient stay candidates for one day surgery. It could be used for infrastructure planning, resources negotiation and the surveillance of appropriate resource utilization.
Resumo:
INTRODUCTION: Acute painful diabetic neuropathy (APDN) is a distinctive diabetic polyneuropathy and consists of two subtypes: treatment-induced neuropathy (TIN) and diabetic neuropathic cachexia (DNC). The characteristics of APDN are (1.) the small-fibre involvement, (2.) occurrence paradoxically after short-term achievement of good glycaemia control, (3.) intense pain sensation and (4.) eventual recovery. In the face of current recommendations to achieve quickly glycaemic targets, it appears necessary to recognise and understand this neuropathy. METHODS AND RESULTS: Over 2009 to 2012, we reported four cases of APDN. Four patients (three males and one female) were identified and had a mean age at onset of TIN of 47.7 years (±6.99 years). Mean baseline HbA1c was 14.2% (±1.42) and 7.0% (±3.60) after treatment. Mean estimated time to correct HbA1c was 4.5 months (±3.82 months). Three patients presented with a mean time to symptom resolution of 12.7 months (±1.15 months). One patient had an initial normal electroneuromyogram (ENMG) despite the presence of neuropathic symptoms, and a second abnormal ENMG showing axonal and myelin neuropathy. One patient had a peroneal nerve biopsy showing loss of large myelinated fibres as well as unmyelinated fibres, and signs of microangiopathy. CONCLUSIONS: According to the current recommendations of promptly achieving glycaemic targets, it appears necessary to recognise and understand this neuropathy. Based on our observations and data from the literature we propose an algorithmic approach for differential diagnosis and therapeutic management of APDN patients.
Resumo:
Tämän diplomityön tavoitteena oli tutkia kohinan poistoa spektrikuvista käyttäen pehmeitä morfologisia suodattimia. Työssä painotettiin impulssimaisen kohinan suodattamista. Suodattimien toimintaa arvioitiin numeerisesti keskimääräisen itseisarvovirheen, neliövirheen sekä signaali-kohinasuhteen avulla ja visuaalisesti tarkastelemalla suodatettuja kuvia sekä niiden yksittäisiä spektritasoja. Käytettyjä suodatusmenetelmiä olivat suodatus kuvapisteittäin spektrin suunnassa, suodatus koko spektrissä sekä kuutiomenetelmä ja komponenteittainen suodatus. Suodatettavat kuvat sisälsivät joko suola ja pippuri- tai bittivirhekohinaa. Parhaimmat suodatustulokset sekä numeeristen virhekriteerien että visuaalisen tarkastelun perusteella saatiin komponenteittaisella sekä kuvapisteittäisellä menetelmällä. Työssä käytetyt menetelmät on esitetty algoritmimuodossa. Suodatinalgoritmien toteutukset ja suodatuskokeet tehtiin Matlab-ohjelmistolla.
Resumo:
El projecte està basat en la creació d'una aplicació per dispositius mòbils android i que fent servir l'ús del micròfon capturi el so que genera l'usuari i pugui determinar si s'està respirant i en quin punt de la respiració es troba l'usuari. S'ha dut a terme una filosofia de disseny orientada a l'usuari (DCU) de manera que el primer pas ha sigut realitzar un prototip i un 'sketch'. A continuació, s'han realitzat 10 aplicacions test i en cadascuna d'elles s'ha ampliat la funcionalitat fins a arribar a obtenir una aplicació base que s'aproxima al disseny inicial generat per mitjà del prototip. El més important dels dissenys algorísmics que s'han realitzat per la aplicació es la capacitat de processar el senyal en temps real, ja que fins i tot s'ha pogut aplicar la transformada ràpida de Fourier (FFT) en temps real sense que el rendiment de l'aplicació es veies afectat. Això ha sigut possible gràcies al disseny del processament amb doble buffer i amb un fil d'execució dedicat independent del fil principal d'execució del programa 'UI Thread'
Resumo:
Research in chemistry education has recognized the need for facilitating students' understanding of different concepts. In contrast, most general chemistry curricula and textbooks not only ignore the context in which science progresses but also emphasize rote learning and algorithmic strategies. A historical reconstruction of scientific progress shows that it inevitably leads to controversy and debate, which can arouse students' interest and thus facilitate understanding. The objective of this article is to review research related to the evaluation of general chemistry textbooks (based on history and philosophy of science, HPS) and suggest alternatives that can facilitate conceptual understanding.
Resumo:
In this paper, we report a preliminary analysis of the impact of Global Navigation Satellite System Reflections (GNSS-R) data on ionospheric monitoring over the oceans. The focus will be on a single polar Low Earth Orbiter (LEO) mission exploiting GNSS-R as well as Navigation (GNSS-N) and Occultation (GNSS-O) total electron content (TEC) measurements. In order to assess impact of the data, we have simulated GNSS-R/O/N TEC data as would be measured from the LEO and from International Geodesic Service (IGS) ground stations, with an electron density (ED) field generated using a climatic ionospheric model. We have also developed a new tomographic approach inspired by the physics of the hydrogen atom and used it to effectively retrieve the ED field from the simulated TEC data near the orbital plane. The tomographic inversion results demonstrate the significant impact of GNSS-R: three-dimensional ionospheric ED fields are retrieved over the oceans quite accurately, even as, in the spirit of this initial study, the simulation and inversion approaches avoided intensive computation and sophisticated algorithmic elements (such as spatio-temporal smoothing). We conclude that GNSS-R data over the oceans can contribute significantly to a Global/GNSS Ionospheric Observation System (GIOS). Index Terms Global Navigation Satellite System (GNSS), Global Navigation Satellite System Reflections (GNSS-R), ionosphere, Low Earth Orbiter (LEO), tomography.
Resumo:
Tutkat muodostavat Suomen rauhanajan ilmavalvonnan rungon. Ilmatilassa on lentokoneiden lisäksi paljon muitakin kohteita, jotka ilmavalvontatutka havaitsee. Naita ei toivottuja kaikuja kutsutaan välkkeeksi. Sadevälke on tilavuusvälkettä. Tämän työn tarkoituksena on löytää menetelmä tai malli, jolla voitaisiin mallintaa sadevälkkeen vaikutus ilmavalvontatutkassa. Toisaalta myös sadevälkkeen suodatus on työn keskeinen tavoite. Käytettyjä suodatusmenetelmiä olivat adaptiivinen suodatus ja doppler-suodatus. Suodinpankkiin eli doppler-suodatukseen lisättiin vielä CFAR Työn tuloksena voi todeta, että sadevälkkeen suodatus onnistui hyvin mutta itse sadevälkkeen mallintamista tulee kehittää edelleen. Työssä käytetyt menetelmät on esitetty algoritmimuodossa. Mittausaineiston keräys suoritettiin keskivalvontatutkalla ja SP-testerillä. Varsinaiset suodatuskokeet ja mallin testaus tehtiin Matlab-ohjelmistolla.