973 resultados para algebra di Lie gruppi risolubili nilpotenti
Resumo:
Si studiano le proprietà principali dei gruppi di permutazioni e delle azioni di gruppo, con particolare riguardo a: gruppi intransitivi, gruppi primitivi, gruppi k-transitivi, gruppi imprimitivi. Si definiscono inoltre le nozioni di prodotto diretto e semidiretto interno ed esterno di gruppi, di prodotto subdiretto e di prodotto intrecciato di gruppi di permutazioni. Si presentano alcuni esempi legati alla geometria.
Resumo:
Il presente lavoro di tesi si inserisce nel contesto dei sistemi ITS e intende realizzare un insieme di protocolli in ambito VANET relativamente semplici ma efficaci, in grado di rilevare la presenza di veicoli in avvicinamento a un impianto semaforico e di raccogliere quelle informazioni di stato che consentano all’infrastruttura stradale di ottenere una stima il più possibile veritiera delle attuali condizioni del traffico in ingresso per ciascuna delle direzioni previste in tale punto. Si prevede di raccogliere i veicoli in gruppi durante il loro avvicinamento al centro di un incrocio. Ogni gruppo sarà costituito esclusivamente da quelle vetture che stanno percorrendo uno stesso tratto stradale e promuoverà l’intercomunicazione tra i suoi diversi membri al fine di raccogliere e integrare i dati sulla composizione del traffico locale. Il sistema realizzato cercherà di trasmettere alle singole unità semaforiche un flusso di dati sintetico ma costante contenente le statistiche sull’ambiente circostante, in modo da consentire loro di applicare politiche dinamiche e intelligenti di controllo della viabilità. L’architettura realizzata viene eseguita all’interno di un ambiente urbano simulato nel quale la mobilità dei nodi di rete corrisponde a rilevazioni reali effettuate su alcune porzioni della città di Bologna. Le performance e le caratteristiche del sistema complessivo vengono analizzate e commentate sulla base dei diversi test condotti.
Resumo:
In questa trattazione ci proponiamo di analizzare e approfondire alcune delle definizioni fondamentali di funzione convessa; l’ambiente nel quale lavoreremo non si limiterà a quello euclideo, ma spazierà anche tra gruppo di Heisenberg e gruppo di Carnot. In questo lavoro dimostriamo una nuova caratterizzazione delle funzioni convesse in termini delle proprietà di sottomedia.
Resumo:
La tesi approfondisce alcuni argomenti di teoria dei gruppi e fornisce alcuni esempi nella classificazione dei gruppi finiti di ordine dato.
Resumo:
Scopo di questa tesi è presentare i concetti topologici legati alla nozione di gruppo di omotopia, con particolare riferimento ai gruppi di omotopia delle sfere. Il capitolo introduttivo riguarda il gruppo fondamentale e il secondo capitolo la sua generalizzazione ai gruppi di omotopia di ordine superiore. Nel terzo capitolo è trattato il cobordismo con framing tra sottovarietà e la sua relazione con la teoria dell'omotopia. Negli ultimi due capitoli sono enunciati teoremi e risultati ottenuti nel problema ancora irrisolto del calcolo dei gruppi di omotopia delle sfere.
Resumo:
Il presente studio si propone di individuare i doveri e le responsabilità, di tipo risarcitorio, degli amministratori, in particolare degli amministratori della società che esercita attività di direzione e coordinamento, in una situazione di crisi o insolvenza nel gruppo, anche in un’ottica di “prevenzione”, e, più precisamente, il complesso di regole di corretta gestione societaria e imprenditoriale, con le quali il silenzio della legge fallimentare in tema di gruppi di società non può non confrontarsi. In particolare, si indagherà sulla possibilità di individuare nel nostro ordinamento giuridico, nel momento di emersione della crisi, doveri di comportamento in capo agli organi di governo della società o ente che esercita attività di direzione e coordinamento, al fine di fronteggiare la crisi, evitando il peggioramento della stessa, ovvero per un risanamento anticipato e, quindi, più suscettibile di esito positivo, nella prospettiva di tutela dei soci c.d. esterni e dei creditori delle società figlie e, nello stesso tempo, dei soci della capogruppo medesima e, quindi, in una prospettiva più ampia e articolata rispetto a una società individualmente considerata. L’oggetto dell’analisi viene introdotto mediante un inquadramento generale della disciplina in materia di gruppi di società presente nel nostro sistema normativo, con particolare riguardo alla disciplina dell’attività di direzione e coordinamento introdotta dal legislatore della riforma del diritto societario (d.lgs. 17 gennaio 2003, n. 6) con gli artt. 2497 ss. cod. civ.. Nella seconda parte verranno individuati e approfonditi i criteri e i principi dai quali ricavare le regole di governance nei gruppi di società e la relativa responsabilità degli amministratori nelle situazioni di crisi nel gruppo. Sulla scorta delle suddette argomentazioni, nell'ultima parte verranno individuate le regole di gestione nell'ambito del gruppo nel momento di “emersione” della crisi e, in particolare, i possibili “strumenti” che il nostro legislatore offre per fronteggiarla.
Resumo:
Caratteristica comune ai regimi di consolidamento previsti dai diversi ordinamenti, è quella di consentire la compensazione tra utili e perdite di società residenti, e, di negare, o rendere particolarmente difficoltosa, la stessa compensazione, quando le perdite sono maturate da società non residenti. La non considerazione delle perdite comporta una tassazione al lordo del gruppo multinazionale, per mezzo della quale, non si colpisce il reddito effettivo dei soggetti che vi appartengono. L’effetto immediato è quello di disincentivare i gruppi a travalicare i confini nazionali. Ciò impedisce il funzionamento del Mercato unico, a scapito della libertà di stabilimento prevista dagli artt. 49-54 del TFUE. Le previsioni ivi contenute sono infatti dirette, oltre ad assicurare a società straniere il beneficio della disciplina dello Stato membro ospitante, a proibire altresì allo Stato di origine di ostacolare lo stabilimento in un altro Stato membro dei propri cittadini o delle società costituite conformemente alla propria legislazione. Gli Stati membri giustificano la discriminazione tra società residenti e non residenti alla luce della riserva di competenza tributaria ad essi riconosciuta dall’ordinamento europeo in materia delle imposte dirette, dunque, in base all’equilibrata ripartizione del potere impositivo. In assenza di qualsiasi riferimento normativo, va ascritto alla Corte di Giustizia il ruolo di interprete del diritto europeo. La Suprema Corte, con una serie di importanti pronunce, ha infatti sindacato la compatibilità con il diritto comunitario dei vari regimi interni che negano la compensazione transfrontaliera delle perdite. Nel verificare la compatibilità con il diritto comunitario di tali discipline, la Corte ha tentato di raggiungere un (difficile) equilibrio tra due interessi completamenti contrapposti: quello comunitario, riconducibile al rispetto della libertà di stabilimento, quello degli Stati membri, che rivendicano il diritto di esercitare il proprio potere impositivo.
Resumo:
La struttura di gruppo è una delle strutture algebriche più semplici e importanti della matematica. Un gruppo si può descrivere in vari modi: uno dei più interessanti è la presentazione per generatori e relazioni. Sostanzialmente presentare un gruppo per generatori e relazioni significa dire quali specifiche ”regole di calcolo” e semplificazione valgono nel gruppo in considerazione oltre a quelle che derivano dagli assiomi di gruppo. Questo porta in particolare alla definizione di gruppo libero. Un gruppo libero non ha regole di calcolo oltre quelle derivanti dagli assiomi di gruppo. Ogni gruppo è un quoziente di un gruppo libero su un appropriato insieme di generatori per un sottogruppo normale, generato dalle relazioni. In questa tesi si ricordano le definizioni più importanti ed elementari della teoria dei gruppi e si passa in seguito a discutere il gruppo libero e le presentazioni di gruppi con generatori e relazioni, dando alcuni esempi. La tesi si conclude illustrando l’algoritmo di Coxeter e Todd, per enumerare le classi laterali di un sottogruppo quando si ha un gruppo presentato per generatori e relazioni.
Resumo:
This thesis is dedicated to the Tits-Kantor-Koecher (TKK) construction which establishes a bijective correspondence between unital Jordan algebras and shortly graded Lie algebras with Z-grading induced by an sl_2-triple. It is based on the observation that if g is a Lie algebra with a short Z-grading and f lies in g_1, then the formula ab=[[a,f],b] defines a structure of a Jordan algebra on g_{-1}. The TKK construction has been extended to Jordan triple systems and, more recently, to the so-called Kantor triple systems. These generalizations are studied in the thesis.
Resumo:
Studio dei gruppi topologici, ovvero degli spazi topologici che possiedono anche una struttura di gruppo; le due strutture sono legate dal fatto che le applicazioni di gruppo sono continue.
Resumo:
Il teorema di Chevalley-Shephard-Todd è un importante risultato del 1954/1955 nella teoria degli invarianti polinomiali sotto l'azione del gruppo delle matrici invertibili. Lo scopo di questa tesi è presentare e dimostrare il teorema nella versione in cui l'anello dei polinomi ha come campo base R e di vedere alcuni esempi concreti di applicazione del teorema. Questa dimostrazione può essere generalizzata facilmente avendo come campo base un qualsiasi campo K di caratteristica 0.
Resumo:
Tesi compilativa riguardo definizione, proprietà e metodi di calcolo di Gruppi superiori di omotopia. Argomenti:definizioni, gruppi delle sfere, proprietà, sospensione, proiezioni di rivestimento, spazi fibrati, approssimazione cellulare, gruppi stabili di omotopia, esempi.
Resumo:
La struttura di gruppo è una delle strutture algebriche più semplici e fondamentali della matematica. Un gruppo si può descrivere in vari modi. Noi abbiamo illustrato la presentazione tramite generatori e relazioni, che consiste sostanzialmente nell'elencare le "regole di calcolo" che valgono nel gruppo considerato, oltre a quelle che derivano dagli assiomi di gruppo. L'idea principale di questa tesi è quella di mostrare come un argomento così tecnico e specifico possa essere reso "elementare" e anche divertente. Siamo partiti dalla costruzione di un gioco, inventando regole da aggiungere di volta in volta. Abbiamo poi tentato di spiegare il medesimo concetto da un punto di vista teorico, tramite la teoria dei gruppi liberi. Si tratta di gruppi che hanno un insieme di generatori soddisfacenti unicamente alle relazioni che sono conseguenza degli assiomi di gruppo.Ogni gruppo è un quoziente di un gruppo libero su un appropriato insieme di generatori per un sottogruppo normale, generato dalle relazioni. Infine si è illustrato il problema della parola formulato da Max Dhen nel 1911, e si è visto come tale problema è risolubile per i gruppi liberi.
Resumo:
La tesi si basa sulla descrizione dei p-gruppi di ordine finito, definiti p-gruppi, cioè quei gruppi che hanno come cardinalità una potenza di un numero primo. Vengono enunciati i teoremi di Sylow e le sue conseguenze. Infine si discute il teorema fondamentale sui gruppi abeliani finiti e la funzione di Eulero.