201 resultados para agroforestry
Resumo:
Regeneration ecology, diversity of native woody species and its potential for landscape restoration was studied in the remnant natural forest at the College of Forestry and Natural Resources at Wondo Genet, Ethiopia. The type of forest is Afromontane rainforest , with many valuable tree species like Aningeria adolfi-friederici, and it is an important provider of ecological, social and economical services for the population that lives in this area. The study contains two parts, natural regeneration studies (at the natural forest) and interviews with farmers in the nearby village of the remnant patch. The objective of the first part was to investigate the floristic composition, densitiy and regeneration profiles of native woody species in the forest, paying special attention to woody species that are considered the most relevant (socio-economic). The second part provided information on woody species preferred by the farmers and on multiple uses of the adjacent natural forest, it also provided information and analysed perceptions on forest degradation. Systematic plot sampling was used in the forest inventory. Twenty square plots of 20 x 20 m were assessed, with 38 identified woody species (the total number of species was 45), representing 26 families. Of these species 61% were trees, 13% shrubs, 11% lianas and 16% species that could have both life forms. An analysis of natural regeneration of five important tree species in the natural forest showed that Aningeria adolfi-friederici had the best regeneration results. An analysis of population structure (as determined by height classes) of two commercially important woody species in the forest, Aningeria adolfi-friederici and Podocarpus falcatus, showed a marked difference: Aningeria had a typical “reversed J” frequency distribution, while Podocarpus showed very low values in all height classes. Multi dimensional scaling (MDS) was used to map the sample plots according to their similarity in species composition, using the Sørensen quantitative index, coupled with indicator species analysis .Three groups were identified with respective indicator species: Group 1 – Adhatoda schimperiana, Group 2 – Olea hochstetteri , Group 3 – Acacia senegal and Aningeria adolfi-friederici. Thirty questionnaire interviews were conducted with farmers in the village of Gotu Onoma that use the nearby remant forest patch. Their tree preferences were exotic species such as Eucalyptus globulus for construction and fuelwood and Grevillea robusta for shade and fertility. Considering forest land degradation farmers were aware of the problem and suggested that the governmental institutions address the problem by planting more Eucalyptus globulus. The natural forest seemed to have moderate levels of disturbance and it was still floristically diverse. However, the low rate of natural regeneration of Podocarpus falcatus suggested that this species is threatened and must be a priority in conservation actions. Plantations and agroforestry seem to be possible solutions for rehabilitation of the surrounding degraded lands, thereby decreasing the existent pressure in the remnant natural forest.
Resumo:
In Taita Hills, south-eastern Kenya, remnants of indigenous mountain rainforests play a crucial role as water towers and socio-cultural sites. They are pressurized due to poverty, shortage of cultivable land and the fading of traditional knowledge. This study examines the traditional ecological knowledge of Taitas and the ways it may be applied within transforming natural resource management regimes. I have analyzed some justifications for and hindrances to ethnodevelopment and participatory forest management in light of recently renewed Kenyan forest policies. Mixed methods were applied by combining an ethnographic approach with participatory GIS. I learned about traditionally protected forests and their ecological and cultural status through a seek out the expert method and with remote sensing data and tools. My informants were: 107 household interviewees, 257 focus group participants, 73 key informants and 87 common informants in participatory mapping. Religious leaders and state officials shared their knowledge for this study. I have gained a better understanding of the traditionally protected forests and sites through examining their ecological characteristics and relation to social dynamics, by evaluating their strengths and hindrances as sites for conservation of cultural and biological diversity. My results show that, these sites are important components of a complex socio-ecological system, which has symbolical status and sacred and mystical elements within it, that contributes to the connectivity of remnant forests in the agroforestry dominated landscape. Altogether, 255 plant species and 220 uses were recognized by the tradition experts, whereas 161 species with 108 beneficial uses were listed by farmers. Out of the traditionally protected forests studied 47 % were on private land and 23% on community land, leaving 9% within state forest reserves. A paradigm shift in conservation is needed; the conservation area approach is not functional for private lands or areas trusted upon communities. The role of traditionally protected forests in community-based forest management is, however, paradoxal, since communal approaches suggests equal participation of people, whereas management of these sites has traditionally been the duty of solely accredited experts in the village. As modernization has gathered pace such experts have become fewer. Sacredness clearly contributes but, it does not equal conservation. Various social, political and economic arrangements further affect the integrity of traditionally protected forests and sites, control of witchcraft being one of them. My results suggest that the Taita have a rich traditional ecological knowledge base, which should be more determinately integrated into the natural resource management planning processes.
Resumo:
Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. center dot Land-use changes affect global and regional climates through both biochemical and biophysical process. center dot Climate effect from biophysical process depends on the location of land-use change. center dot Climate mitigation strategies such as afforestation/reforestation should consider the net effect of biochemical and biophysical processes for effective mitigation. center dot Climate-smart agriculture could use bio-geoengineering techniques that consider plant biophysical characteristics such as reflectivity and water use efficiency.
Resumo:
The context: Soil biodiversity and sustainable agriculture; Abstracts - Theme 1: Monitoring and assessment: Bioindicators of soil health: assessment and monitoring for sustainable agriculture; Practical tools to measure soil health and their use by farmers; Biological soil quality from biomass to biodiversity - importance and resilience to management stress and disturbance; Integrated management of plant-parasitic nematodes in maize-bean cropping systems; Microbial quantitative and qualitative changes in soils under different crops and tillage management systems in Brazil; Diversity in the rhizobia associated with Phaseolus vulgaris L: in Ecuador and comparisons with Mexican bean rhizobia; Sistemas integrados ganadería-agricultura en Cuba; Soil macrofauna as bioindicator of soil quality; Biological functioning of cerrado soils; Hydrolysis of fluorescein diacetate as a soil quality indicator in different pasture systems; Soil management and soil macrofauna communities at Embrapa Soybean, Londrina, Brazil; Soil macrofauna in a 24 - year old no-tillage system in Paraná, Brazil; Invertebrate macrofauna of soils inpastures under different forms of management in the cerrado (Brazil); Soil tillage modifies the invertebrate soil macrofauna community; Soil macrofauna in various tillage and land use systems on an oxisols near Londrina, Paraná, Brazil; Interference of agricultural systems on soil macrofauna; Scarab beetle-grub holes in various tillage and crop management systems at Embrapa Soybean, Londrina, Brazil; Biological management of agroecosystems; Soil biota and nutrient dynamics through litterfall in agroforestry system in Rondônia, Amazônia, Brazil; Soil-C stocks and earthworm diversity of native and introduced pastures in Veracruz, Mexico; Theme 2 : Adaptive management: Some thoughts on the effects and implications of the transition from weedy multi-crop to wead-free mono-crop systems in Africa; Towards sustainable agriculture with no-tillage and crop rotation systems in South Brazil; Effect of termites on crusted soil rehabilitation in the Sahel; Management of macrofauna in traditional and conventional agroforestry systems from India with special reference to termites and earthworms; Adaptive management for redeveloping traditional agroecosystems; Conservation and sustainable use of soil biodiversity: learning with master nature!; Convergence of sciences: inclusive technology innovation processes for better integrated crop/vegetation, soil and biodiversity management; Potential for increasing soil biodiversity in agroecosystems; Biological nitrogen fixation and sustainability in the tropics; Theme 3: Research and innovation: Plant flavonoids and cluster roots as modifiers of soil biodiversity; The significance of biological diversity in agricultural soil for disease suppressiveness and nutrient retention; Linking above - and belowground biodiversity: a comparison of agricultural systems; Insect-pests in biologically managed oil and crops: the experience at ICRISAT; Sistemas agricolas micorrizados en Cuba; The effect of velvetbean (Mucuna pruriens) on the tropical earthworm Balanteodrilus pearsei: a management option for maize crops in the Mexican humid tropics; The potential of earthworms and organic matter quality in the rehabilitation of tropical soils; Research and innovation in biological management of soil ecosystems; Application of biodynamic methods in the Egyptian cotton sector; Theme 4: Capacity building and mainstreaming: Soil ecology and biodiversity: a quick scan of its importance for government policy in The Netherlands; Agrotechnological transfer of legume inoculants in Eastern and Southern Africa; Agricultura urbana en Cuba; Soil carbon sequestration for sustaining agricultural production and improving the environment; Conservation and sustainable management of below-ground biodiversity: the TSBF-BGBD network project; The tropical soil biology and fertility institute of CIAT (TSBF); South-South initiative for training and capacity building for the management of soil biology/biodiversity; Strategies to facilititate development and adoption of integrated resource management for sustainable production and productivity improvement; The challenge program on biological nitrogen fixation (CPBNF); Living soil training for farmers: improving knowledge and skills in soil nutrition management; Do we need an inter-governmental panel on land and soil (IPLS)? Protection and sustainable use of biodiversity of soils; Cases Studies -- Plant parasitic nematodes associated with common bean (Phaseolus vulgaris L.) and integrated management approaches; Agrotechnological transfer of legume inoculants in Eastern and Southern Africa; Restoring soil fertility and enhancing productivity in Indian tea plantations with earthworms and organic fertilizers; Managing termites and organic resources to improve soil productivity in the Sahel; Overview and case studies on biological nitrogen fixation: perspectives and limitations; Soil biodiversity and sustainable agriculture: an overview.
Resumo:
Esta publicacao tem por objetivo reunir as informacoes disponiveis na literatura sobre os sistemas agroflorestais de seringueira com cafeeiro, de modo a auxiliar os agricultores e extensionistas nas tomadas de decisoes e servir como referencial para pesquisas futuras nessa area. Sao discutidos os aspectos economicos e tecnicos das culturas, tais como: exigencias de clima e solo, compatibilidade vegetativa e fitossanitaria, materiais geneticos, tipos de sistemas, indice de equivalencia de area e praticas de manejo, visando a viabilidade tecnica e economica das culturas e dos sistemas como um todo.
Resumo:
Consorciacao com culturas de ciclo curto. consorciacao com culturas perenes. seringueira x cafeeiro. sistemas temporarios. Consorciacao do cafeeiro durante a formacao do seringal. Substituicao de cafezal em fim de ciclo por seringal. Sistemas permanentes. Seringal em renques no cafezal. Arborizacao do cafezal com seringueiras. Seringueira x cacaueira. Cacaueira x seringais velhos e desfolhados. Novos plantios consorciados de seringueira x cacaueiro. Seringueira x citros. Substituicao de pomares citricos decadentes por seringais. Consorciacao de citros durante a formacao do eringal. Consorciacao permanente de seringueira x citros. Seringueira x pimenteira-do-reino. Seringueira x palmeiras e plantas menos exigentes de luz. Seringueira x guaranazeiro. Seringueir-ras como componentes de quintais agroflorestais.
Resumo:
2001
Resumo:
Manejo e uso da biodiversidade em sistemas agroflorestais. Integracao dos sistemas agroflorestais no planejamento da paisagem rural. Insercao de sistemas agroflorestais em acoes de desenvolvimento, centradas no homem e na comunidade, na Amazonia brasileira.
Resumo:
Food is one of the main exogenous sources of genotoxic compounds. In heated food products, polycyclic aromatic hydrocarbons (PAHs) represent a priority group of genotoxic, mutagenic and/or carcinogenic chemical pollutants with adverse long-term health effects. People can be exposed to these compounds through different environments and via various routes: inhalation, ingestion of foods and water and even percutaneously. The presence of these compounds in food may be due to environmental contamination, to industrial handling and processing of foods and to oil processing and refining. The highest levels of these compounds are found in smoked foods, in seafood which is found in polluted waters, in grilled meats and, to a lesser extent, in vegetable fats and oils. Lower levels of PAHs are found in vegetables and in cereals and its products.
Resumo:
This research is a study about knowledge interface that aims to analyse knowledge discontinuities, the dynamic and emergent characters of struggles and interactions within gender system and ethnicity differences. The cacao boom phenomenon in Central Sulawesi is the main context for a changing of social relations of production, especially when the mode of production has shifted or is still underway from subsistence to petty commodity production. This agrarian change is not only about a change of relationship and practice, but, as my previous research has shown, also about the shift of knowledge domination, because knowledge construes social practice in a dialectical process. Agroecological knowledge is accumulated through interaction, practice and experience. At the same time the knowledge gained from new practices and experiences changes mode of interaction, so such processes provide the arena where an interface of knowledge is manifested. In the process of agro-ecological knowledge interface, gender and ethnic group interactions materialise in the decision-making of production and resource allocation at the household and community level. At this point, power/knowledge is interplayed to gain authority in decision-making. When authority dominates, power encounters resistance, whereas the dominant power and its resistance are aimed to ensure socio-economic security. Eventually, the process of struggle can be identified through the pattern of resource utilisation as a realisation of production decision-making. Such processes are varied from one community to another, and therefore, it shows uniqueness and commonalities, especially when it is placed in a context of shifting mode of production. The focus is placed on actors: men and women in their institutional and cultural setting, including the role of development agents. The inquiry is informed by 4 major questions: 1) How do women and men acquire, disseminate, and utilise their agro ecological knowledge, specifically in rice farming as a subsistence commodity, as well as in cacao farming as a petty commodity? How and why do such mechanisms construct different knowledge domains between two genders? How does the knowledge mechanism apply in different ethnics? What are the implications for gender and ethnicity based relation of production? ; 2) Using the concept of valued knowledge in a shifting mode of production context: is there any knowledge that dominates others? How does the process of domination occur and why? Is there any form of struggle, strategies, negotiation, and compromise over this domination? How do these processes take place at a household as well as community level? How does it relate to production decision-making? ; 3) Putting the previous questions in two communities with a different point of arrival on a path of agricultural commercialisation, how do the processes of struggle vary? What are the bases of the commonalities and peculiarities in both communities?; 4) How the decisions of production affect rice field - cacao plantation - forest utilisation in the two villages? How does that triangle of resource use reflect the constellation of local knowledge in those two communities? What is the implication of this knowledge constellation for the cacao-rice-forest agroecosystem in the forest margin area? Employing a qualitative approach as the main method of inquiry, indepth and dialogic interviews, participant observer role, and document review are used to gather information. A small survey and children’s writing competition are supplementary to this data collection method. The later two methods are aimed to give wider information on household decision making and perception toward the forest. It was found that local knowledge, particularly knowledge pertaining to rice-forest-cacao agroecology is divided according to gender and ethnicity. This constellation places a process of decision-making as ‘the arena of interface’ between feminine and masculine knowledge, as well as between dominant and less dominant ethnic groups. Transition from subsistence to a commercial mode of production is a context that frames a process where knowledge about cacao commodity is valued higher than rice. Market mechanism, as an external power, defines valued knowledge. Valued knowledge defines the dominant knowledge holder, and decision. Therefore, cacao cultivation becomes a dominant practice. Its existence sacrifices the presence of rice field and the forest. Knowledge about rice production and forest ecosystem exist, but is less valued. So it is unable to challenge the domination of cacao. Various forms of struggles - within gender an ethnicity context - to resist cacao domination are an expression of unequal knowledge possession. Knowledge inequality implies to unequal access to withdraw benefit from market valued crop. When unequal knowledge fails to construct a negotiated field or struggles fail to reveal ‘marginal’ decision, e.g. intensification instead of cacao expansion to the forest, interface only produces divergence. Gender and ethnicity divided knowledge is unabridged, since negotiation is unable to produce new knowledge that accommodates both interests. Rice is loaded by ecological interest to conserve the forest, while cacao is driven by economic interest to increase welfare status. The implication of this unmediated dominant knowledge of cacao production is the construction of access; access to the forest, mainly to withdraw its economic benefit by eliminating its ecological benefit. Then, access to cacao as the social relationship of production to acquire cacao knowledge; lastly, access to defend sustainable benefit from cacao by expansion. ‘Socio-economic Security’ is defined by Access. The convergence of rice and cacao knowledge, however, should be made possible across gender and ethnicity, not only for the sake of forest conservation as the insurance of ecological security, but also for community’s socio-economic security. The convergence might be found in a range of alternative ways to conduct cacao sustainable production, from agroforestry system to intensification.
Resumo:
The traditional control of Imperata brasiliensis grasslands used by farmers in the Peruvian Amazon is to burn the grass. The objective of this study was to compare different methods of short-term control. Biological, mechanical, chemical and traditional methods of control were compared. Herbicide spraying and manual weeding have shown to be very effective in reducing above- and below-ground biomass growth in the first 45 days after slashing the grass, with effects persisting in the longer term, but both are expensive methods. Shading seems to be less effective in the short-term, whereas it influences the Imperata growth in the longer term. After one year shading, glyphosate application and weeding significantly reduced aboveground biomass by 94, 67 and 53%; and belowground biomass by 76, 65 and 58%, respectively, compared to control. We also found a significant decrease of Imperata rhizomes in soil during time under shading. Burning has proved to have no significant effect on Imperata growth. The use of shade trees in a kind of agroforestry system could be a suitable method for small farmers to control Imperata grasslands.
Resumo:
Ricinodendron heudelotii (Baill.) Pierre ex Pax. kernel (njansang) commercialization has been promoted by the World Agroforestry Centre (ICRAF) in project villages in Cameroon with the aim to alleviate poverty for small-scale farmers. We evaluated to what extent development interventions improved the financial situation of households by comparing project and control households. The financial importance of njansang to household livelihoods between 2005 and 2010 was investigated through semi-structured questionnaires with retrospective questions, focus group discussions, interviews and wealth-ranking exercises. The importance of njansang increased strongly in the entire study region and the increase was significantly larger in project households. Moreover, absolute numbers of income from njansang commercialization as well as relative importance of njansang in total cash income, increased significantly more in project households (p < 0.05). Although the lower wealth class households could increase their income through njansang trade, the upper wealth class households benefited more from the projects' interventions. Group sales as conducted in project villages did not lead to significantly higher prices and should be reconsidered. Hence, promotion of njansang had a positive effect on total cash income and can still be improved. The corporative actors for njansang commercialization are encouraged to adapt their strategies to ensure that also the lower wealth class households benefit from the conducted project interventions. In this respect, frequent project monitoring and impact analysis are important tools to accomplish this adaptation.
Resumo:
Agro-ecological resource use pattern in a traditional hill agricultural watershed in Garhwal Himalaya was analysed along an altitudinal transect. Thirty one food crops were found, although only 0.5% agriculture land is under irrigation in the area. Fifteen different tree species within agroforestry systems were located and their density varied from 30-90 trees/ha. Grain yield, fodder from agroforest trees and crop residue were observed to be highest between 1200 and 1600 m a.s.l. Also the annual energy input- output ratio per hectare was highest between 1200 and 1600 m a.s.l. (1.46). This higher input- output ratio between 1200-1600 m a.s.l. was attributed to the fact that green fodder, obtained from agroforestry trees, was considered as farm produce. The energy budget across altitudinal zones revealed 95% contribution of the farmyard manure and the maximum output was in terms of either crop residue (35%) or fodder (55%) from the agroforestry component. Presently on average 23%, 29% and 41% cattle were dependent on stall feeding in villages located at higher, lower and middle altitudes respectively. Similarly, fuel wood consumption was greatly influenced by altitude and family size. The efficiency and sustainability of the hill agroecosystem can be restored by strengthening of the agroforestry component. The approach will be appreciated by the local communities and will readily find their acceptance and can ensure their effective participation in the programme.
Resumo:
Water scarcity and food insecurity are pervasive issues in the developing world and are also intrinsically linked to one another. Through the connection of the water cycle and the carbon cycle this study illustrates that synergistic benefits can be realized by small scale farmers through the implementation of waste water irrigated agroforestry. The WaNuLCAS model is employed using La Huerta agroforestry site in Texcoco, South Central Mexico, as the basis for parameterization. The results of model simulations depicting scenarios of water scarcity and waste water irrigation clearly show that the addition of waste water greatly increases the agroforestry system’s generation of crop yields, above- and below-ground biomass, soil organic matter and carbon storage potential. This increase in carbon sequestration by the system translates into better local food security, diversified household income through payments for ecosystem services and contributes to the mitigation of global climate change.