907 resultados para affine features


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we report on data analysed from a student project about attitudes to school and student perception of engagement and disengagement. The data were collected by students in an Australian study that employed the Young People as Researchers Model. Middle years students devised and administered a questionnaire to students in grade eight, nine and ten at a secondary school in Australia. A total of 239 students completed the questionnaire. The students completed the initial analysis which was followed by a more detailed analysis by the authors of this paper. The findings support the work of American, British and Australian researchers about the factors that influence engagement and disengagement from schooling. The reported outcomes from the student work and the secondary analysis indicate that students do have the capacity to undertake valid and meaningful research and can make informed contributions to school improvement and student engagement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As increasing numbers of Chinese language learners choose to learn English online (CNNIC, 2012), there is a need to investigate popular websites and their language learning designs. This paper reports on the first stage of a study that analysed the pedagogical, linguistic and content features of 25 Chinese English Language Learning (ELL) websites ranked according to their value and importance to users. The website ranking was undertaken using a system known as PageRank. The aim of the study was to identify the features characterising popular sites as opposed to those of less popular sites for the purpose of producing a framework for ELL website design in the Chinese context. The study found that a pedagogical focus with developmental instructional materials accommodating diverse proficiency levels was a major contributor to website popularity. Chinese language use for translations and teaching directives and intermediate level English for learning materials were also significant features. Content topics included Anglophone/Western and non-Anglophone/Eastern contexts. Overall, popular websites were distinguished by their mediation of access to and scaffolded support for ELL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a reactive collision avoidance method for small unmanned rotorcraft using spherical image-based visual servoing. Only a single point feature is used to guide the aircraft in a safe spiral like trajectory around the target, whilst a spherical camera model ensures the target always remains visible. A decision strategy to stop the avoidance control is derived based on the properties of spiral like motion, and the effect of accurate range measurements on the control scheme is discussed. We show that using a poor range estimate does not significantly degrade the collision avoidance performance, thus relaxing the need for accurate range measurements. We present simulated and experimental results using a small quad rotor to validate the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of mel-frequency deltaphase (MFDP) features in comparison to, and in fusion with, traditional mel-frequency cepstral coefficient (MFCC) features within joint factor analysis (JFA) speaker verification. MFCC features, commonly used in speaker recognition systems, are derived purely from the magnitude spectrum, with the phase spectrum completely discarded. In this paper, we investigate if features derived from the phase spectrum can provide additional speaker discriminant information to the traditional MFCC approach in a JFA based speaker verification system. Results are presented which provide a comparison of MFCC-only, MFDPonly and score fusion of the two approaches within a JFA speaker verification approach. Based upon the results presented using the NIST 2008 Speaker Recognition Evaluation (SRE) dataset, we believe that, while MFDP features alone cannot compete with MFCC features, MFDP can provide complementary information that result in improved speaker verification performance when both approaches are combined in score fusion, particularly in the case of shorter utterances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Cancer outlier profile analysis (COPA) has proven to be an effective approach to analyzing cancer expression data, leading to the discovery of the TMPRSS2 and ETS family gene fusion events in prostate cancer. However, the original COPA algorithm did not identify down-regulated outliers, and the currently available R package implementing the method is similarly restricted to the analysis of over-expressed outliers. Here we present a modified outlier detection method, mCOPA, which contains refinements to the outlier-detection algorithm, identifies both over- and under-expressed outliers, is freely available, and can be applied to any expression dataset. Results We compare our method to other feature-selection approaches, and demonstrate that mCOPA frequently selects more-informative features than do differential expression or variance-based feature selection approaches, and is able to recover observed clinical subtypes more consistently. We demonstrate the application of mCOPA to prostate cancer expression data, and explore the use of outliers in clustering, pathway analysis, and the identification of tumour suppressors. We analyse the under-expressed outliers to identify known and novel prostate cancer tumour suppressor genes, validating these against data in Oncomine and the Cancer Gene Index. We also demonstrate how a combination of outlier analysis and pathway analysis can identify molecular mechanisms disrupted in individual tumours. Conclusions We demonstrate that mCOPA offers advantages, compared to differential expression or variance, in selecting outlier features, and that the features so selected are better able to assign samples to clinically annotated subtypes. Further, we show that the biology explored by outlier analysis differs from that uncovered in differential expression or variance analysis. mCOPA is an important new tool for the exploration of cancer datasets and the discovery of new cancer subtypes, and can be combined with pathway and functional analysis approaches to discover mechanisms underpinning heterogeneity in cancers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image representations derived from simplified models of the primary visual cortex (V1), such as HOG and SIFT, elicit good performance in a myriad of visual classification tasks including object recognition/detection, pedestrian detection and facial expression classification. A central question in the vision, learning and neuroscience communities regards why these architectures perform so well. In this paper, we offer a unique perspective to this question by subsuming the role of V1-inspired features directly within a linear support vector machine (SVM). We demonstrate that a specific class of such features in conjunction with a linear SVM can be reinterpreted as inducing a weighted margin on the Kronecker basis expansion of an image. This new viewpoint on the role of V1-inspired features allows us to answer fundamental questions on the uniqueness and redundancies of these features, and offer substantial improvements in terms of computational and storage efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to examine the association between a range of objectively measured neighbourhood features and the likelihood of mid-aged adults walking for transport. Increased walking for transport would bring multiple benefits, including improved population and environmental health. As part of the baseline HABITAT study, 10,745 residents of Brisbane, Australia, aged 40–65 years, from 200 neighbourhoods were asked about the time they spent walking for transport. Walking data were collected by mail survey and the physical environmental features of neighbourhoods were compiled using a geographic information systems database. Walking for transport was categorised into four levels and the association between walking and each neighbourhood characteristic was examined using multilevel multinomial models. A number of threshold trends were evident; for example, off-road bikeways were consistently associated with walking between 60 and 150 min per week. Living within 500 m of public transit was also an important predictor but only for those who walked for less than 150 min per week. Interventions targeting these neighbourhood characteristics may lead to improved environmental quality, lower rates of overweight and obesity and associated chromic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to comprehend user information needs by concepts, this paper introduces a novel method to match relevance features with ontological concepts. The method first discovers relevance features from user local instances. Then, a concept matching approach is developed for matching these features to accurate concepts in a global knowledge base. This approach is significant for the transition of informative descriptor and conceptional descriptor. The proposed method is elaborately evaluated by comparing against three information gathering baseline models. The experimental results shows the matching approach is successful and achieves a series of remarkable improvements on search effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there has been a growing interest from the design and construction community to adopt Building Information Models (BIM). BIM provides semantically-rich information models that explicitly represent both 3D geometric information (e.g., component dimensions), along with non-geometric properties (e.g., material properties). While the richness of design information offered by BIM is evident, there are still tremendous challenges in getting construction-specific information out of BIM, limiting the usability of these models for construction. In this paper, we describe our approach for extracting construction-specific design conditions from a BIM model based on user-defined queries. This approach leverages an ontology of features we are developing to formalize the design conditions that affect construction. Our current implementation analyzes the component geometry and topological relationships between components in a BIM model represented using the Industry Foundation Classes (IFC) to identify construction features. We describe the reasoning process implemented to extract these construction features, and provide a critique of the IFC’s to support the querying process. We use examples from two case studies to illustrate the construction features, the querying process, and the challenges involved in deriving construction features from an IFC model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly of retroviruses is driven by oligomerization of the Gag polyprotein. We have used cryo-electron tomography together with subtomogram averaging to describe the three-dimensional structure of in vitro-assembled Gag particles from human immunodeficiency virus, Mason-Pfizer monkey virus, and Rous sarcoma virus. These represent three different retroviral genera: the lentiviruses, betaretroviruses and alpharetroviruses. Comparison of the three structures reveals the features of the supramolecular organization of Gag that are conserved between genera and therefore reflect general principles of Gag-Gag interactions and the features that are specific to certain genera. All three Gag proteins assemble to form approximately spherical hexameric lattices with irregular defects. In all three genera, the N-terminal domain of CA is arranged in hexameric rings around large holes. Where the rings meet, 2-fold densities, assigned to the C-terminal domain of CA, extend between adjacent rings, and link together at the 6-fold symmetry axis with a density, which extends toward the center of the particle into the nucleic acid layer. Although this general arrangement is conserved, differences can be seen throughout the CA and spacer peptide regions. These differences can be related to sequence differences among the genera. We conclude that the arrangement of the structural domains of CA is well conserved across genera, whereas the relationship between CA, the spacer peptide region, and the nucleic acid is more specific to each genus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lockyer Valley is situated 80 km west of Brisbane and is bounded on the sou th and west by the Great Dividing Range. The valley is a major western sub - catchment of the larger Brisbane River drainage system and is drained by the Lockyer Creek. The Lockyer catchment forms approximately 20% of the total Brisbane River catchment and has an area of around 2900 km2. The Lockyer Creek is an ephemeral drainage system, and the stream and associated alluvium are the main source for irrigation water supply in the Lockyer Valley. The catchment is comprised of a number of well -defined, elongate tributaries in the south, and others in the north, which are more meandering in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.