955 resultados para acute myeloid leukemia (AML)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In patients with myelodysplastic syndrome (MDS) precursor cell cultures (colony-forming unit cells, CFU-C) can provide an insight into the growth potential of malignant myeloid cells. In a retrospective single-center study of 73 untreated MDS patients we assessed whether CFU-C growth patterns were of prognostic value in addition to established criteria. Abnormalities were classified as qualitative (i.e. leukemic cluster growth) or quantitative (i.e. strongly reduced/absent growth). Thirty-nine patients (53%) showed leukemic growth, 26 patients (36%) had strongly reduced/absent colony growth, and 12 patients showed both. In a univariate analysis the presence of leukemic growth was associated with strongly reduced survival (at 10 years 4 vs. 34%, p = 0.004), and a high incidence of transformation to AML (76 vs. 32%, p = 0.01). Multivariate analysis identified leukemic growth as a strong and independent predictor of early death (relative risk 2.12, p = 0.03) and transformation to AML (relative risk 2.63, p = 0.04). Quantitative abnormalities had no significant impact on the disease course. CFU- C assays have significant predictive value in addition to established prognostic factors in MDS. Leukemic growth identifies a subpopulation of MDS patients with poor prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In patients with myelodysplastic syndrome (MDS) precursor cell cultures (colony-forming unit cells, CFU-C) can provide an insight into the growth potential of malignant myeloid cells. In a retrospective single-center study of 73 untreated MDS patients we assessed whether CFU-C growth patterns were of prognostic value in addition to established criteria. Abnormalities were classified as qualitative (i.e. leukemic cluster growth) or quantitative (i.e. strongly reduced/absent growth). Thirty-nine patients (53%) showed leukemic growth, 26 patients (36%) had strongly reduced/absent colony growth, and 12 patients showed both. In a univariate analysis the presence of leukemic growth was associated with strongly reduced survival (at 10 years 4 vs. 34%, p = 0.004), and a high incidence of transformation to AML (76 vs. 32%, p = 0.01). Multivariate analysis identified leukemic growth as a strong and independent predictor of early death (relative risk 2.12, p = 0.03) and transformation to AML (relative risk 2.63, p = 0.04). Quantitative abnormalities had no significant impact on the disease course. CFU-C assays have a significant predictive value in addition to established prognostic factors in MDS. Leukemic growth identifies a subpopulation of MDS patients with poor prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS) primarily afflict older individuals. Hematopoietic cell transplantation (HCT) is generally not offered because of concerns of excess morbidity and mortality. Reduced-intensity conditioning (RIC) regimens allow increased use of allogeneic HCT for older patients. To define prognostic factors impacting long-term outcomes of RIC regimens in patients older than age 40 years with AML in first complete remission or MDS and to determine the impact of age, we analyzed data from the Center for International Blood and Marrow Transplant Research (CIBMTR). Patients and Methods We reviewed data reported to the CIBMTR (1995 to 2005) on 1,080 patients undergoing RIC HCT. Outcomes analyzed included neutrophil recovery, incidence of acute or chronic graft-versus-host disease (GVHD), nonrelapse mortality (NRM), relapse, disease-free survival (DFS), and overall survival (OS). Results Univariate analyses demonstrated no age group differences in NRM, grade 2 to 4 acute GVHD, chronic GVHD, or relapse. Patients age 40 to 54, 55 to 59, 60 to 64, and >= 65 years had 2-year survival rates as follows: 44% (95% Cl, 37% to 52%), 50% (95% Cl, 41% to 59%), 34% (95% Cl, 25% to 43%), and 36% (95% Cl, 24% to 49%), respectively, for patients with AML (P = .06); and 42% (95% Cl, 35% to 49%), 35% (95% Cl, 27% to 43%), 45% (95% Cl, 36% to 54%), and 38% (95% Cl, 25% to 51%), respectively, for patients with MDS (P = .37). Multivariate analysis revealed no significant impact of age on NRM, relapse, DFS, or OS (all P>.3). Greater HLA disparity adversely affected 2-year NRM, DFS, and OS. Unfavorable cytogenetics adversely impacted relapse, DFS, and OS. Better pre-HCT performance status predicted improved 2-year OS. Conclusion With these similar outcomes observed in older patients, we conclude that older age alone should not be considered a contraindication to HCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Myelodysplastic syndromes (MDS) are a group of disorders characterized by cytopenias, with a propensity for evolution into acute myeloid leukemias (AML). This transformation is driven by genomic instability, but mechanisms remain unknown. Telomere dysfunction might generate genomic instability leading to cytopenias and disease progression. Experimental Design: We undertook a pilot study of 94 patients with MDS (56 patients) and AML (38 patients). The MDS cohort consisted of refractory cytopenia with multilineage dysplasia (32 cases), refractory anemia (12 cases), refractory anemia with excess of blasts (RAEB) 1 (8 cases), RAEB2 (1 case), refractory anemia with ring sideroblasts (2 cases), and MDS with isolated del(5q) (1 case). The AML cohort was composed of AML-M4 (12 cases), AML-M2 (10 cases), AML-M5 (5 cases), AML-M0 (5 cases), AML-M1 (2 cases), AML-M4eo (1 case), and AML with multidysplasia-related changes (1 case). Three-dimensional quantitative FISH of telomeres was carried out on nuclei from bone marrow samples and analyzed using TeloView. Results: We defined three-dimensional nuclear telomeric profiles on the basis of telomere numbers, telomeric aggregates, telomere signal intensities, nuclear volumes, and nuclear telomere distribution. Using these parameters, we blindly subdivided the MDS patients into nine subgroups and the AML patients into six subgroups. Each of the parameters showed significant differences between MDS and AML. Combining all parameters revealed significant differences between all subgroups. Three-dimensional telomeric profiles are linked to the evolution of telomere dysfunction, defining a model of progression from MDS to AML. Conclusions: Our results show distinct three-dimensional telomeric profiles specific to patients with MDS and AML that help subgroup patients based on the severity of telomere dysfunction highlighted in the profiles. Clin Cancer Res; 18(12); 3293-304. (C) 2012 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of its aberrant activation, the PI3K/AKT/mTOR signaling pathway represents a pharmacological target in blast cells from patients with acute myelogenous leukemia (AML). Using Reverse Phase Protein Microarrays (RPMA), we have analyzed 20 phosphorylated epitopes of the PI3K/Akt/mTor signal pathway of peripheral blood and bone marrow specimens of 84 patients with newly diagnosed AML. Fresh blast cells were grown for 2 h, 4 h or 20 h untreated or treated with a panel of phase I or phase II Akt allosteric inhibitors, either alone or in combination with the mTOR kinase inhibitor Torin1 or the broad RTK inhibitor Sunitinib. By unsupervised hierarchical clustering a strong phosphorylation/activity of most of the sampled members of the PI3K/Akt/mTOR pathway was observed in 70% of samples from AML patients. Remarkably, however, we observed that inhibition of Akt phosphorylation, as well as of its substrates, was transient, and recovered or even increased far above basal level after 20 h in 60% samples. We demonstrated that inhibition of Akt induces FOXO-dependent insulin receptor expression and IRS-1 activation, attenuating the effect of drug treatment by reactivation of PI3K/Akt. Consistent with this model we found that combined inhibition of Akt and RTKs is much more effective than either alone, revealing the adaptive capabilities of signaling networks in blast cells and highliting the limations of these drugs if used as monotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the results of a prospective, randomized phase 3 trial evaluating autologous peripheral blood stem cell transplantation (ASCT) versus intensive consolidation chemotherapy in newly diagnosed AML patients in complete remission (CR1). Patients with AML (16-60 years) in CR1 after 2 cycles of intensive chemotherapy and not eligible for allogeneic SCT were randomized between intensive chemotherapy with etoposide and mitoxantrone or ASCT ater high-dose cyclophosphamide and busulfan. Of patients randomized (chemotherapy, n = 259; ASCT, n = 258), more than 90% received their assigned treatment. The 2 groups were comparable with regard to prognostic factors. The ASCT group showed a markedly reduced relapse rate (58% vs 70%, P = .02) and better relapse-free survival at 5 years (38% vs 29%, P = .065, hazard ratio = 0.82; 95% confidence interval, 0.66-1.1) with nonrelapse mortality of 4% versus 1% in the chemotherapy arm (P = .02). Overall survival was similar (44% vs 41% at 5 years, P = .86) because of more opportunities for salvage with second-line chemotherapy and stem cell transplantation in patients relapsing on the chemotherapy arm. This large study shows a relapse advantage for ASCT as postremission therapy but similar survival because more relapsing patients on the chemotherapy arm were salvaged with a late transplantation for relapse. This trial is registered at www.trialregister.nl as #NTR230 and #NTR291.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract This phase II trial treated elderly or frail AML patients with single agent subcutaneous azacytidine at 100 mg/m(2), on 5 of 28 days for up to 6 cycles. Treatment was stopped for lack of response, or continued to progression in responders. Primary endpoint was response within 6 months. A response rate >34% was considered a positive trial outcome. From 9/2008-4/2010, 45 patients from 10 centres (median age 74 (55-86) years) were accrued. Patients received 4 (1-21) cycles. Best response was CR/CRi in 8 (18%; 95% CI: 8%-32%.), 0 (0%) PR, 7 (16%) hematologic improvement, 17 (38%) stable disease. Three nonresponding patients stopped treatment after 6 cycles, 31 patients had stopped early and 11 patients continued treatment for 8-21 cycles. Adverse events (grade >III) were infections (13), febrile neutropenia (14), thrombocytopenia (7), dyspnea (6), bleeding (5) and anemia (4 patients). Median overall survival was 6 months. Peripheral blood blast counts, grouped at 30% had a borderline significant association with response (p = 0.07). This modified azacytidine schedule is feasible for elderly or frail AML patients in an outpatient setting with moderate, mainly hematologic, toxicity and response in a proportion of patients, although the primary objective was not reached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine to what extent allogeneic hematopoietic stem-cell transplantation (alloHSCT) quantitatively reduces relapse in acute myeloid leukemia with monosomal karyotype (MK-AML) compared with alternative postremission therapy and how it compares with other cytogenetic subcategories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The transcription factor C/EBPalpha controls differentiation and proliferation in normal granulopoiesis in a stage-specific manner. Loss of C/EBPalpha function in myeloid cells in vitro and in vivo leads to a block to myeloid differentiation similar to that which is observed in malignant cells from patients with acute myeloid leukemia. The finding of C/EBPalpha alterations in subgroups of acute myeloid leukemia patients suggests a direct link between critically decreased C/EBPalpha function and the development of the disorder. RECENT FINDINGS: Conditional mouse models provide direct evidence that loss of C/EBPalpha function leads to the accumulation of myeloid blasts in the bone marrow. Targeted disruption of the wild type C/EBPalpha protein, while conserving the dominant-negative 30 kDa isoform of C/EBPalpha, induces an AML-like disease in mice. In hematopoietic stem cells C/EBPalpha serves to limit cell self-renewal. Finally, C/EBPalpha function is disrupted at different levels in specific subgroups of acute myeloid leukemia patients. SUMMARY: There is evidence that impaired C/EBPalpha function contributes directly to the development of acute myeloid leukemia. Normal myeloid development and acute myeloid leukemia are now thought to reflect opposite sides of the same hematopoietic coin. Restoring C/EBPalpha function represents a promising target for novel therapeutic strategies in acute myeloid leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Treatment failure in acute myeloid leukemia is probably caused by the presence of leukemia initiating cells, also referred to as leukemic stem cells, at diagnosis and their persistence after therapy. Specific identification of leukemia stem cells and their discrimination from normal hematopoietic stem cells would greatly contribute to risk stratification and could predict possible relapses. RESULTS For identification of leukemic stem cells, we developed flow cytometric methods using leukemic stem cell associated markers and newly-defined (light scatter) aberrancies. The nature of the putative leukemic stem cells and normal hematopoietic stem cells, present in the same patient's bone marrow, was demonstrated in eight patients by the presence or absence of molecular aberrancies and/or leukemic engraftment in NOD-SCID IL-2Rγ-/- mice. At diagnosis (n=88), the frequency of the thus defined neoplastic part of CD34+CD38- putative stem cell compartment had a strong prognostic impact, while the neoplastic parts of the CD34+CD38+ and CD34- putative stem cell compartments had no prognostic impact at all. After different courses of therapy, higher percentages of neoplastic CD34+CD38- cells in complete remission strongly correlated with shorter patient survival (n=91). Moreover, combining neoplastic CD34+CD38- frequencies with frequencies of minimal residual disease cells (n=91), which reflect the total neoplastic burden, revealed four patient groups with different survival. CONCLUSION AND PERSPECTIVE Discrimination between putative leukemia stem cells and normal hematopoietic stem cells in this large-scale study allowed to demonstrate the clinical importance of putative CD34+CD38- leukemia stem cells in AML. Moreover, it offers new opportunities for the development of therapies directed against leukemia stem cells, that would spare normal hematopoietic stem cells, and, moreover, enables in vivo and ex vivo screening for potential efficacy and toxicity of new therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human t(3;21)(q26;q22) translocation is found as a secondary mutation in some cases of chronic myelogenous leukemia during the blast phase and in therapy-related myelodysplasia and acute myelogenous leukemia. One result of this translocation is a fusion between the AML1, MDS1, and EVI1 genes, which encodes a transcription factor of approximately 200 kDa. The role of the AML1/MDS1/EVI1 (AME) fusion gene in leukemogenesis is largely unknown. In this study, we analyzed the effect of the AME fusion gene in vivo by expressing it in mouse bone marrow cells via retroviral transduction. We found that mice transplanted with AME-transduced bone marrow cells suffered from an acute myelogenous leukemia (AML) 5–13 mo after transplantation. The disease could be readily transferred into secondary recipients with a much shorter latency. Morphological analysis of peripheral blood and bone marrow smears demonstrated the presence of myeloid blast cells and differentiated but immature cells of both myelocytic and monocytic lineages. Cytochemical and flow cytometric analysis confirmed that these mice had a disease similar to the human acute myelomonocytic leukemia. This murine model for AME-induced AML will help dissect the molecular mechanism of AML and the molecular biology of the AML1, MDS1, and EVI1 genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss-of-function mutations in telomerase complex genes can cause bone marrow failure, dyskeratosis congenita, and acquired aplastic anemia, both diseases that predispose to acute myeloid leukemia. Loss of telomerase function produces short telomeres, potentially resulting in chromosome recombination, end-to-end fusion, and recognition as damaged DNA. We investigated whether mutations in telomerase genes also occur in acute myeloid leukemia. We screened bone marrow samples from 133 consecutive patients with acute myeloid leukemia and 198 controls for variations in TERT and TERC genes. An additional 89 patients from a second cohort, selected based on cytogenetic status, and 528 controls were further examined for mutations. A third cohort of 372 patients and 384 controls were specifically tested for one TERT gene variant. In the first cohort, 11 patients carried missense TERT gene variants that were not present in controls (P<0.0001); in the second cohort, TERT mutations were associated with trisomy 8 and inversion 16. Mutation germ-line origin was demonstrated in 5 patients from whom other tissues were available. Analysis of all 3 cohorts (n = 594) for the most common gene variant (A1062T) indicated a prevalence 3 times higher in patients than in controls (n = 1,110; P = 0.0009). Introduction of TERT mutants into telomerase-deficient cells resulted in loss of enzymatic activity by haploinsufficiency. Inherited mutations in TERT that reduce telomerase activity are risk factors for acute myeloid leukemia. We propose that short and dysfunctional telomeres limit normal stem cell proliferation and predispose for leukemia by selection of stem cells with defective DNA damage responses that are prone to genome instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human V alpha 24NKT cells are activated by alpha -galactosylceramide (alpha -GalCer)-pulsed dendritic cells in a CD1d-dependent and a T-cell receptor-mediated manner. Here, we demonstrate that CD4(+)V alpha 24NKT cells derived from a patient with acute myeloid leukemia (AML) M4 are phenotypically similar to those of healthy donors and, in common with those derived from healthy donors, express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) when the cells are activated by alpha -GalCer-pulsed dendritic cells but not prior to activation. We also show that myeloid that human activated CD4(+)V alpha 24NKT cells induced apoptosis of human leukemia cells in vivo. This is the first evidence that activated V alpha 24NKT cells express TRAIL and that TRAIL causes apoptosis of monocytic leukemia cells from patients with AML M4 in vitro and in vivo. Adoptive immune therapy with activated V alpha 24NKT cells, or other strategies to increase activated V alpha 24NKT cells in vivo, may be of benefit to patients with AML M4.