976 resultados para active power filters
Resumo:
Wind turbines based on doubly fed induction generators (DFIG) become the most popular solution in high power wind generation industry. While this topology provides great performance with the reduced power rating of power converter, it has more complicated structure in comparison with full-rated topologies, and therefore leads to complexity of control algorithms and electromechanical processes in the system. The purpose of presented study is to present a proper vector control scheme for the DFIG and overall control for the WT to investigate its behavior at different wind speeds and in different grid voltage conditions: voltage sags, magnitude and frequency variations. The key principles of variable-speed wind turbine were implemented in simulation model and demonstrated during the study. Then, based on developed control scheme and mathematical model, the set of simulation is made to analyze reactive power capabilities of the DFIG wind turbine. Further, the rating of rotor-side converter is modified to not only generate active rated active power, but also to fulfill Grid Codes. Results of modelling and analyzing of the DFIG WT behavior under different speeds and different voltage conditions are presented in the work.
Resumo:
Dans une turbine hydraulique, la rotation des aubes dans l’eau crée une zone de basse pression, amenant l’eau à passer de l’état liquide à l’état gazeux. Ce phénomène de changement de phase est appelé cavitation et est similaire à l’ébullition. Lorsque les cavités de vapeur formées implosent près des parois, il en résulte une érosion sévère des matériaux, accélérant de façon importante la dégradation de la turbine. Un système de détection de l’érosion de cavitation à l’aide de mesures vibratoires, employable sur les turbines en opération, a donc été installé sur quatre groupes turbine-alternateur d’une centrale et permet d’estimer précisément le taux d’érosion en kg/ 10 000 h. Le présent projet vise à répondre à deux objectifs principaux. Premièrement, étudier le comportement de la cavitation sur un groupe turbine-alternateur cible et construire un modèle statistique, dans le but de prédire la variable cavitation en fonction des variables opératoires (tels l’ouverture de vannage, le débit, les niveaux amont et aval, etc.). Deuxièmement, élaborer une méthodologie permettant la reproductibilité de l’étude à d’autres sites. Une étude rétrospective sera effectuée et on se concentrera sur les données disponibles depuis la mise à jour du système en 2010. Des résultats préliminaires ont mis en évidence l’hétérogénéité du comportement de cavitation ainsi que des changements entre la relation entre la cavitation et diverses variables opératoires. Nous nous proposons de développer un modèle probabiliste adapté, en utilisant notamment le regroupement hiérarchique et des modèles de régression linéaire multiple.
Resumo:
Autilização de filtros ultravioletas isolados em formulações fotoprotetoras, origina produtos com proteção limitada contra as radiações solares, o que evidencia a necessidade de associar compostos bioativos. Estudos anteriores demonstraram que a rutina, um composto bioativo, interage sinergicamente com filtros solares incorporados em preparações fotoprotetoras. Portanto, este trabalho teve como objetivo avaliar a influência da rutina sobre a estabilidade físico-química e funcional de emulsões fotoprotetoras. 16 formulações foram desenvolvidas, submetidas ao teste de estabilidade preliminar e caracterizadas de acordo com o pH, perfil reológico e eficácia fotoprotetora in vitro . A formulação com o melhor desempenho e a formulação correspondente, sem rutina, foram submetidos ao teste de estabilidade normal. Todas as formulações apresentaram valores de pH compatível com a pele e comportamento reológico semelhante. A formulação F16 e a mesma formulação, sem rutina, foram submetidas ao teste de estabilidade normal e apresentaram valores de pH semelhantes e perfis reológicos que foram mantidos ao longo dos dias de análise. Aatividade antirradicalar foi estável apenas para formulações armazenadas a 5,0 ± 0,5°C. A eficácia fotoprotetora demonstrou resultados semelhantes entre ambas as formulações, que também foi observado em todos os dias de análise. Em conclusão, rutina não influenciou a fotoestabilidade da formulação sob as condições adotadas.
Resumo:
The Methods for compensation of harmonic currents and voltages have been widely used since these methods allow to reduce to acceptable levels the harmonic distortion in the voltages or currents in a power system, and also compensate reactive. The reduction of harmonics and reactive contributes to the reduction of losses in transmission lines and electrical machinery, increasing the power factor, reduce the occurrence of overvoltage and overcurrent. The active power filter is the most efficient method for compensation of harmonic currents and voltages. The active power filter is necessary to use current and voltage controllers loop. Conventionally, the current and voltage control loop of active filter has been done by proportional controllers integrative. This work, investigated the use of a robust adaptive control technique on the shunt active power filter current and voltage control loop to increase robustness and improve the performance of active filter to compensate for harmonics. The proposed control scheme is based on a combination of techniques for adaptive control pole placement and variable structure. The advantages of the proposed method over conventional ones are: lower total harmonic distortion, more flexibility, adaptability and robustness to the system. Moreover, the proposed control scheme improves the performance and improves the transient of active filter. The validation of the proposed technique was verified initially by a simulation program implemented in C++ language and then experimental results were obtained using a prototype three-phase active filter of 1 kVA
Resumo:
This work describes the experimental implementation of a shunt active power filter applied to a three-phase induction generator. The control strategy of active filter turned to the excitation control of the machine and to decrease the harmonics in the generator output current. Involved the implementation of a digital PWM switching, and was made a comparison of two techniques for obtaining the reference currents. The first technique is based on the synchronous dq reference method and the second on the theory of instantaneous power. The comparison is performed via simulation and experimental results. To obtain the experimental results, was mounted a bench trial and the control and communications needed were implemented using DSP - MS320F2812. The simulation results and experimental data proved the efficiency of the filter to apply, highlighting the technique of instantaneous power
Resumo:
This work develops a methodology for defining the maximum active power being injected into predefined nodes in the studied distribution networks, considering the possibility of multiple accesses of generating units. The definition of these maximum values is obtained from an optimization study, in which further losses should not exceed those of the base case, i.e., without the presence of distributed generation. The restrictions on the loading of the branches and voltages of the system are respected. To face the problem it is proposed an algorithm, which is based on the numerical method called particle swarm optimization, applied to the study of AC conventional load flow and optimal load flow for maximizing the penetration of distributed generation. Alternatively, the Newton-Raphson method was incorporated to resolution of the load flow. The computer program is performed with the SCILAB software. The proposed algorithm is tested with the data from the IEEE network with 14 nodes and from another network, this one from the Rio Grande do Norte State, at a high voltage (69 kV), with 25 nodes. The algorithm defines allowed values of nominal active power of distributed generation, in percentage terms relative to the demand of the network, from reference values
Resumo:
The scarcity of natural resources and the search for alternative energy sources promote a rapid change in the energy world. Among the renewable energy sources, solar energy is the most promising, presenting technology of greatest growth rate nowadays. Researchers around the world are seeking ways to facilitate their progress, developing technologies with higher efficiency and lower cost. As a contribution to global progress, this master thesis proposes the development of a strategy of maximum power tracking based on perturbation and observation method for photovoltaic systems. The proposed control strategy is based on active power balance of the system, with a reduced number of sensors. It also allows the PV system to act as a regulator of the power quality at the point of commom coupling (PCC), compensating the harmonic distortion and power factor of the current netw
Resumo:
Currently, there are several power converter topologies applied to wind power generation. The converters allow the use of wind turbines operating at variable speed, enabling better use of wind forces. The high performance of the converters is being increasingly demanded, mainly because of the increase in the power generation capacity by wind turbines, which gave rise to various converter topologies, such as parallel or multilevel converters. The use of converters allow effective control of the power injected into the grid, either partially, for the case using partial converter, or total control for the case of using full converter. The back-to-back converter is one of the most used topologies in the market today, due to its simple structure, with few components, contributing to robust and reliable performance. In this work, is presented the implementation of a wind cogeneration system using a permanent magnet synchronous generator (PMSG) associated with a back-to-back power converter is proposed, in order to inject active power in an electric power system. The control strategy of the active power delivered to the grid by cogeneration is based on the philosophy of indirect control
Resumo:
The paper describes a novel neural model to electrical load forecasting in transformers. The network acts as identifier of structural features to forecast process. So that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through load data extracted from a Brazilian Electric Utility taking into account time, current, tension, active power in the three phases of the system. The results obtained in the simulations show that the developed technique can be used as an alternative tool to become more appropriate for planning of electric power systems.
Resumo:
Economic dispatch (ED) problems have recently been solved by artificial neural network approaches. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. The ability of neural networks to realize some complex non-linear function makes them attractive for system optimization. All ED models solved by neural approaches described in the literature fail to represent the transmission system. Therefore, such procedures may calculate dispatch policies, which do not take into account important active power constraints. Another drawback pointed out in the literature is that some of the neural approaches fail to converge efficiently toward feasible equilibrium points. A modified Hopfield approach designed to solve ED problems with transmission system representation is presented in this paper. The transmission system is represented through linear load flow equations and constraints on active power flows. The internal parameters of such modified Hopfield networks are computed using the valid-subspace technique. These parameters guarantee the network convergence to feasible equilibrium points, which represent the solution for the ED problem. Simulation results and a sensitivity analysis involving IEEE 14-bus test system are presented to illustrate efficiency of the proposed approach. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper an alternative method based on artificial neural networks is presented to determine harmonic components in the load current of a single-phase electric power system with nonlinear loads, whose parameters can vary so much in reason of the loads characteristic behaviors as because of the human intervention. The first six components in the load current are determined using the information contained in the time-varying waveforms. The effectiveness of this method is verified by using it in a single-phase active power filter with selective compensation of the current drained by an AC controller. The proposed method is compared with the fast Fourier transform.
Resumo:
Este artigo apresenta os principais resultados e o detalhamento da metodologia e equações de controle de um retificador monofásico pré-regulador de 150kW para sistema trólebus. A estrutura proposta possibilita a Correção ativa do Fator de Potência (CFP) com baixos níveis de Distorção Harmônica Total (DHT) na corrente, em conformidade com a norma internacional IEC 61000-3-4. Fruto de um projeto de Pesquisa, Desenvolvimento e Inovação (P) junto à empresa AES Eletropaulo Metropolitana de São Paulo, em parceria com a empresa de transporte Himalaia S.A., o projeto possui como principais objetivos estimular o interesse para a expansão das linhas de trólebus a partir de uma plataforma de alimentação de menor custo de instalação e manutenção, sem a necessidade de subestações retificadoras, e, com vistas a promover a melhoria da qualidade de vida nos grandes centros urbanos. Nessa nova modalidade proposta para o sistema de alimentação, o trólebus pode ser alimentado tanto pelas redes convencionais em corrente contínua (CC) quanto pelas redes de distribuição em corrente alternada (CA), mantendo-se a disposição a dois fios dos sistemas CC, sendo as mudanças de rede de alimentação (CC ou CA) monitoradas e controladas digitalmente. Todo o sistema de gerenciamento e controle do conversor é realizado digitalmente por FPGA XC3S200. Na evolução do sistema proposto, os autores pretendem inclusive eliminar as linhas aéreas de alimentação, através da utilização de postos de alimentação em CA, especialmente desenvolvidos para os pontos de embarque/desembarque de passageiros para este veículo de transporte coletivo, eliminando-se os aspectos visuais negativos das redes de alimentação deste modal, e, reduzindo-se as falhas de operação do sistema.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)