1000 resultados para acoustic Doppler current profiler (ADCP)
Resumo:
This data set was obtained during the R. V. POLARSTERN cruise ANT-XXVIII/3. Current velocities were measured nearly continuously when outside territorial waters along the ship's track with a vessel-mounted TRD Instruments' 153.6-kHz Ocean Surveyor ADCP. The transducers were located 11 m below the water line and were protected against ice floes by an acoustically transparent plastic window. The current measurements were made using a pulse of 2s and vertical bin length of 4 m. The ship's velocity was calculated from position fixes obtained by the Global Positioning System (GPS). Heading, roll and pitch data from the ship's gyro platforms and the navigation data were used to convert the ADCP velocities into earth coordinates. Accuracy of the ADCP velocities mainly depends on the quality of the position fixes and the ship's heading data. Further errors stem from a misalignment of the transducer with the ship's centerline. The ADCP data were processed using the Ocean Surveyor Sputum Interpreter (OSSI) software developed by GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel. The averaging interval was set to 120 seconds. The reference layer was set to bins 5 to 16 avoiding near surface effects and biases near bin 1. Sampling interval setting: 2s; Number of bins: 80; Bin length: 4m; Pulse length: 4m; Blank beyond transmit length: 4m. Data processing setting: Top reference bin: 5; Bottom reference bin: 16; Average: 120s; Misalignment amplitude: 1.0276 +/- 0.1611, phase: 0.8100 +/- 0.7190. The precision for single ping and 4m cell size reported by TRDI is 0.30m/s. Resulting from the single ping precision and the number of pings (most of the time 36) during 120seconds the velocity accuracy is nearly 0.05m/s. (Velocity accuracy = single ping precision divided by square root of the number of pings).
Resumo:
The mixing regime of the upper 180 m of a mesoscale eddy in the vicinity of the Antarctic Polar Front at 47° S and 21° E was investigated during the R.V. Polarstern cruise ANT-XVIII/2 within the scope of the iron fertilization experiment EisenEx. On the basis of hydrographic CTD and ADCP profiles we deduced the vertical diffusivity Kz from two different parameterizations. Since these parameterizations bear the character of empirical functions, based on theoretical and idealized assumptions, they were inter alia compared with Cox-number and Thorpe-scale related diffusivities deduced from microstructure measurements, which supplied the first direct insights into turbulence of this ocean region. Values of Kz in the range of 10**-4 - 10**-3 m**2/s appear as a rather robust estimate of vertical diffusivity within the seasonal pycnocline. Values in the mixed layer above are more variable in time and reach 10**-1 m**2/s during periods of strong winds. The results confirm a close agreement between the microstructure-based eddy diffusivities and eddy diffusivities calculated after the parameterization of Pacanowski and Philander [1981, Journal of Physical Oceanography 11, 1443-1451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2].