979 resultados para acetolactate synthase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homocystinuria, due to a deficiency of the enzyme cystathionine beta-synthase (CBS), is an inborn error of sulphur-amino acid metabolism, This is an autosomal recessive disease which results in hyperhomocysteinaemia and a wide range of clinical features, including optic lens dislocation, mental retardation, skeletal abnormalities and premature thrombotic events, We report the identification of 5 missense mutations in the protein-coding region of the CBS gene from 3 patients with pyridoxine-nonresponsive homocystinuria. Reverse-transcription PCR was used to amplify CBS cDNA from each patient and the coding region was analysed by direct sequencing, The mutations detected included 3 novel (1058C --> T, 992C --> A and 1316G --> A) and 2 previously identified (430G --> A and 833C --> T) base alterations in the CBS cDNA, Each of these mutations predicts a single amino acid substitution in the CBS polypeptide, Appropriate cassettes of patient CBS cDNA, containing each of the above defined mutations, were used to replace the corresponding cassettes of normal CBS cDNA sequence within the bacterial expression vector pT7-7. These recombinant mutant and normal CBS constructs were expressed in Escherichia coli cells and the catalytic activities of the mutant proteins were compared with normal. All of the mutant proteins exhibited decreased catalytic activity in vitro, which confirmed the association between the individual mutation and CBS dysfunction in each patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute intermittent porphyria (AIP) is an inborn error of haem biosynthesis caused by a variety of mutations in the gene coding for hydroxymethylbilane synthase (HMB-S). The entire coding sequence of this gene, from each of three South African AIP patients, was therefore screened for mutations using chemical cleavage mismatch (CCM) analysis and any changes detected characterized by DNA sequencing. Three single base changes were identified; a G(77) to A in exon 3, a C-346 to T in exon 8 and a G(518) to A in exon 10. These missense mutations, previously reported to be present in other populations, are known to be responsible for the structurally deleterious amino acid replacements R26H, R116W and R173Q, respectively. The in vitro expression of the enzymes containing these mutations and the subsequent measurement of their specific activities revealed a reduction to approximately 4% of normal activity. (C) 1997 Academic Press Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pityriasis lichenoides (PL) is an inflammatory skin disease of unknown etiology. Nitric oxide (NO) has emerged as an important mediator of many physiological functions. The importance of NO-mediated signaling in skin diseases has been reported by several studies. A review of clinical records and histopathological slides of 34 patients diagnosed with PL was performed. Three different groups of skin biopsies including PL chronica (24 patients), PL et varioliformis acuta (10 patients) and 15 normal skin samples were subjected to the immunohistochemistry technique for inducible nitric oxide synthase (iNOS) detection. Normal skin group exhibited a few number of iNOS-positive cells in the dermis and rare positive cells in the upper epidermis, unlike abundant epidermal and dermal iNOS expression observed in both PL groups. According to our results, we hypothesize that NO produced by iNOS could participate in PL pathogenesis. Abnormal and persistent responses to unknown antigens, probably a pathogen, associated with NO immunoregulatory functions could contribute to the relapsing course observed in PL. NO anti-apoptotic effect on T-cell lymphocytes could play a role on maintenance of reactive T cells, leading to a T-cell lymphoid dyscrasia. Di Giunta G, Goncalves da Silva AM, Sotto MN. Inducible nitric oxide synthase in pityriasis lichenoides lesions.J Cutan Pathol 2009; 36: 325-330. (C) Blackwell Munksgaard 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was observed at 50 pg/ml hLIF, with maximal activity at 5 ng/ml. In the presence of the NOS inhibitor L-NAME, hLIF-induced activation of NOS was greatly decreased, however it was still 63-fold higher than in control (p < 0.05). SMC-DNA synthesis was significantly reduced (-47%) following incubation with hLIF plus L-arginine, the substrate required for NO production (p < 0.05), with no effect observed in the absence of L-arginine. Silastic cuff placement over the right carotid artery of rabbits resulted in a neointima 19.3 +/- 5.4% of total wall cross-sectional area, which was increased in the presence of L-NAME (27.0 +/- 2.0%; p < 0.05) and reduced in the presence of L-arginine (11.3 +/- 2.0%; p < 0.05). The effect of L-arginine was ameliorated by co-administration of L-NAME (16.4 +/- 1.5%). However, administration of L-NAME with hLIF had no effect on the potent inhibition of neointimal formation by hLIF (3.2 +/- 2.5 vs. 2.1 +/- 5.4%, respectively). Similarly, with hLIF administration, NOS activity in the cuffed carotid increased to 269.0 +/- 14.0% of saline-treated controls and remained significantly higher with coadministration of L-NAME (188.5 +/- 14.7%). These results indicate that hLIF causes superinduction of NO by SMC, and that it is, either partially or wholly, through this mechanism that hLIF is a potent inhibitor of neointimal formation in vivo and of smooth muscle proliferation in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the influence of iNOS-derived NO on the mechanics, inflammatory, and remodeling process in peripheral lung parenchyma of guinea pigs with chronic pulmonary allergic inflammation. Animals treated or not with 1400W were submitted to seven exposures of ovalbumin in increasing doses. Seventy-two hours after the 7th inhalation, lung strips were suspended in a Krebs organ bath, and tissue resistance and elastance measured at baseline and after ovalbumin challenge. The strips were submitted to histopathological measurements. The ovalbumin-exposed animals showed increased maximal responses of resistance and elastance (p < 0.05), eosinophils counting (p < 0.001), iNOS-positive cells (p < 0.001), collagen and elastic fiber deposition (p < 0.05), actin density (p < 0.05) and 8-iso-PGF2 alpha expression (p < 0.001) in alveolar septa compared to saline-exposed ones. Ovalbumin-exposed animals treated with 1400 W had a significant reduction in lung functional and histopathological findings (p < 0.05). We showed that iNOS-specific inhibition attenuates lung parenchyma constriction, inflammation, and remodeling, suggesting NO-participation in the modulation of the oxidative stress pathway. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular remodeling is an important feature in asthma pathophysiology. Although investigations suggested that nitric oxide (NO) is involved in lung remodeling, little evidence established the role of inducible NO synthase (iNOS) isoform in bronchial vascular remodeling. The authors investigated if iNOS contribute to bronchial vascular remodeling induced by chronic allergic pulmonary inflammation. Guinea pigs were submitted to ovalbumin exposures with increasing doses (1 similar to 5 mg/mL) for 4 weeks. Animals received 1400W (iNOS-specific inhibitor) treatment for 4 days beginning at 7th inhalation. Seventy-two hours after the 7th inhalation, animals were anesthetized, mechanical ventilated, exhaled NO was collected, and lungs were removed and submitted to picrosirius and resorcin-fuchsin stains and to immunohistochemistry for matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), and transforming growth factor-beta (TGF-beta). Collagen and elastic fiber deposition as well as MMP-9, TIMP-1, and TGF-beta expression were increase in bronchial vascular wall in ovalbumin-exposed animals. The iNOS inhibition reduced all parameters studied. In this model, iNOS inhibition reduced the bronchial vascular extracellular remodeling, particularly controlling the collagen and elastic fibers deposition in pulmonary vessels. This effect can be associated to a reduction on TGF-beta and on metalloproteinase-9/TIMP-1 vascular expression. It reveals new therapeutic strategies and some possible mechanism related to specific iNOS inhibition to control vascular remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the identification of a novel mutation at a highly conserved residue within the N-terminal region of spermine synthase (SMS) in a second family with Snyder-Robinson X-linked mental retardation syndrome ( OMIM 309583). This missense mutation, p.G56S, greatly reduces SMS activity and leads to severe epilepsy and cognitive impairment. Our findings contribute to a better delineation and expansion of the clinical spectrum of Snyder-Robinson syndrome, support the important role of the N-terminus in the function of the SMS protein, and provide further evidence for the importance of SMS activity in the development of intellectual processing and other aspects of human development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physiological effects of nitroglycerin as a potent vasodilator have long been documented. However, the molecular mechanisms by which nitroglycerin exerts its biological functions are still a matter of intense debate. Enzymatic pathways converting nitroglycerin to vasoactive compounds have been identified, but none of them seems to fully account for the reported clinical observations. Here, we demonstrate that nitroglycerin triggers constitutive nitric oxide synthase (NOS) activation, which is a major Source of NO responsible for low-dose (1-10 nM) nitroglycerin-induced vasorelaxation. Our studies in cell cultures, isolated vessels, and whole animals identified endothelial NOS activation as a fundamental requirement for nitroglycerin action at pharmacologically relevant concentrations in WT animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatic ischemia followed by reperfusion (IR) results in mild to severe remote organ injury. Oxidative stress and nitric oxide (NO) seem to be involved in the IR injury. Our aim was to investigate the effects of liver I/R on hepatic function and lipid peroxidation, leukocyte infiltration and NO synthase (NOS) immunostaining in the lung and the kidney. We randomized 24 male Wistar rats into 3 groups: 1) control; 2) 60 minutes of partial (70%) liver 1 and 2 hours of global liver R; and 3) 60 minutes of partial (70%) liver I and 6 hours of global liver R. Groups 2 and 3 showed significant increases in plasma alanine and aspartate aminotransferase levels and in tissue malondialdehyde and myeloperoxidase contents. In the kidney, positive endothelial NOS (eNOS) staining was significantly decreased in group 3 compared with group 1. However, staining for inducible NOS (iNOS) and neuronal NOS (nNOS) did not differ among the groups. In the lung, the staining for eNOS and iNOS did not show significant differences among the groups; no positive nNOS staining was observed in any group. These results suggested that partial liver I followed by global liver R induced liver, kidney, and lung injuries characterized by neutrophil sequestration and increased oxidative stress. In addition, we supposed that the reduced NO formation via eNOS may be implicated in the moderate impairment of renal function, observed by others at 24 hours after liver I/R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Asymmetric dimethylarginine (ADMA), produced during protein metabolism, is an endogenous inhibitor of nitric oxide synthase, but little is known about its direct vasoactive properties in different arterial beds. Material/Methods: Segments of canine coronary, renal, and femoral arteries were pretreated with increasing concentrations of ADMA, and endothelial function was evaluated in organ chambers. Results: In precontracted canine coronary arteries, the highest concentrations of ADMA inhibited endothelium-dependent relaxation mediated by acetylcholine (n=7), but no concentration of ADMA inhibited receptor-independent relaxation mediated by calcium ionophore (n=7) (P<.001). The effect of ADMA on acetylcholine-mediated relaxation was shown to be competitive inhibition of the nitric oxide synthase pathway, because the addition of L-arginine (10(-3) M), but not D-arginine (101 M), reversed the effect produced by 10(-5) M ADMA. Further, ADMA did not alter endothelium-independent relaxation mediated by sodium nitroprusside (10(-9) to 10(-6) M; n=7). Femoral arteries (n=7) and renal arteries (n=7) were more sensitive to ADMA than were coronary arteries, and they demonstrated significant ADMA inhibition to receptor dependent relaxation induced by acetylcholine (P=.03 and P=.01, respectively) and to receptor-independent relaxation induced by calcium ionophore (P=.02 and P=.01, respectively). Conclusions: Endothelium-dependent relaxation mediated by ADMA is more marked in femoral and renal arteries than in coronary arteries. The response in coronary arteries may be overall protective. Considering these different effects in various artery types, the role of ADMA as a confiable and specific cardiovascular risk factor is questioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistant hypertension (RH) is the maintenance of elevated blood pressure concurrent with the use of three different antihypertensive drugs, one of which is a diuretic. The Renin-Angiotensin-Aldosterone System plays a major role in volume-dependent hypertension. Therefore, its components are interesting targets for genetic association studies. This work focused on the -344 C/T polymorphism in the CYP11b2 gene, which encodes aldosterone synthase. This work evaluates the association between T allele and resistance to anti-hypertensive treatment. Genotyping analysis included 88 subjects with RH, 142 who were responsive to anti-hypertensive treatment and 110 subjects as a control group. Plasmatic concentrations of aldosterone, renin and cortisol, carotid intima-media thickness and carotid-femoral pulse wave velocity were assessed in a smaller subset of hypertensive patients. An association was found between T allele and hypertension (P < 0.005), but there was no difference in allele frequencies between both hypertensive groups. There was no difference in plasmatic parameters either, in remodeling indicators between the genotypic groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that immunological challenges as lipopolysaccharide (LPS) administration increases plasma oxytocin (OT) concentration. Nitric oxide (NO), a free radical gas directly related to the immune system has been implicated in the central modulation of neuroendocrine adaptive responses to immunological stress. This study aimed to test the hypothesis that the NO pathway participates in the control of OT release induced by LPS injection. For this purpose, adult male Wistar rats received bolus intravenous (i.v.) injection of LPS, preceded or not by iv. or intracerebroventricular (i.c.v.) injections of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor. Rats were decapitated after 2, 4 and 6 h of treatment, for measurement of OT by radioimmunoassay. In a separate set of experiments, mean arterial pressure (MAP) and heart rate (HR) were measured every 15 min over 6 h, using a polygraph. These studies revealed that LPS reduced MAP and increased HR at 4 and 6 h post-injection. LPS significantly increased plasma OT concentration at 2 and 4 h post-injection. Pre-treatment with i.c.v. AG further increased plasma OT concentration and attenuated the LPS-induced decrease in MAP, however, i.v. AG failed to show similar effects. Thus, iNOS pathway may activate a central inhibitory control mechanism that attenuates OT secretion during endotoxemic shock. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Angiogenesis has been shown as an important process in hematological malignancies. It consists in endothelial proliferation, migration, and tube formation following pro-angiogenic factors releasing, specially the vascular endothelial growth factor (VEGF), which angiogenic effect seems to be dependent on nitric oxide (NO). We examined the association among functional polymorphism in these two angiogenesis related genes: VEGF (-2578C>A, -1154G>A, and -634G>C) and NOS3 (-786T>C, intron 4 b>a, and Glu298Asp) with prognosis of childhood acute lymphoblastic leukemia (ALL). Methods: The genotypes were determined and haplotypes estimated in 105 ALL patients that were divided in 2 groups: high risk (HR) and low risk of relapse (LR) patients. In addition, event-free survival curves according to genotypes were assessed. Results: The group HR compared to the LR showed a higher frequency of the alleles -2578C and -634C and the haplotype CGC for VEGF (0.72 vs. 0.51, p<0.008; 0.47 vs. 0.26, p<0.008; and 42.1 vs. 14.5, p<0.006; respectively) and a lower frequency of the haplotype CbGlu (0.4 vs. 8.8, p<0.006), for NOS3. Conclusion: Polymorphisms of VEGF and NOS3 genes are associated with high risk of relapse, therefore may have a prognostic impact in childhood ALL. (C) 2010 Elsevier B.V. All rights reserved.