987 resultados para abstract Cauchy problem


Relevância:

80.00% 80.00%

Publicador:

Resumo:

O Aprendizado Baseado em Problemas (ABP) é apontado como ferramenta importante para ensinar os alunos a aprender por si mesmos. O objetivo deste trabalho é investigar de que forma a ABP pode contribuir para a formação de professores. Para tanto, foi realizado um estudo de caso dedicado a avaliar o uso da Aprendizagem Baseada em Problemas em Curso de Férias direcionado à redescoberta da anatomia e fisiologia de animais com estilos de vida contrastantes. Participaram do estudo alunos e professores do Ensino Médio, alunos do Ensino Superior do Curso de Licenciatura em Biologia e monitores alunos do Curso de Medicina. Foram feitas análises qualitativas e quantitativas a partir dos dados obtidos por questionários e entrevistas semi-estruturadas, realizadas com alunos, professores e monitores. Os resultados das análises revelaram que ela contribui definitivamente para a formação do professor reflexivo assim como promove maior envolvimento e motivação dos alunos e professores com o curso assim como para a possibilidade de sua utilização imediata no ensino médio e superior na Amazônia, a despeito das restrições atuais de infraestrutura.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Um problema de grande relevância social na Amazônia é o fato das pequenas comunidades isoladas não serem contempladas pelos benefícios dos grandes empreendimentos hidrelétricos instalados na região. Uma solução alternativa a para este problema, é o aproveitamento da grande malha de pequenos rios e igarapés da região a partir da implantação de Centrais Geradoras Hidrelétricas – CGH’s (antigas mini e microcentrais).. Dentro deste contexto, o presente trabalho analisa e discute certos aspectos gerais inerentes à implantação das CGH’s, e principalmente, trazendo-os à realidade das pequenas bacias Amazônicas. Os aspectos a serem abordados neste trabalho dizem respeito às avaliações preliminares de terreno, aspectos hidrológicos, tecnológicos, ambientais e financeiros. Os aspectos são analisados de forma global para implantação de CGH’s e suas etapas, também analisados e aplicados a um estudo de caso – implantação da CGH irmã Dorothy na pequena bacia hidrográfica do Igarapé são João em Anapú-pa, onde foi possível a utilização de metodologia existente para um estudo aprimorado de implantação de CGH’s na Amazônia. No âmbito hidrológico, utilizou-se um modelo chuva-vazão desenvolvido por Blanco 2005 e aplicou a pequenas bacias da Amazônia que não possuem registros de vazão. Nos aspectos tecnológicos utilizou ferramentas computacionais para predição de desempenho de turbinas axiais de baixa queda adaptas ao relevo da região, e simulados para a turbina axial a ser implantada na CGH irmã Dorothy. No contexto ambiental atualmente há forte cobrança pelas autoridades competentes locais para realização do estudo ambiental inerente ao aproveitamento, e se tratando da região Amazônica, ambientalmente muita agredida pela ação do homem, os estudos devem ser bem definidos, apontando os possíveis impactos que podem ser causados pela CGH, descritos no RAS (Relatório Ambiental Simplificado) anexo deste trabalho. Desta forma foi desenvolvido um método para cálculo e simulação da área inundada para implantação de CGH’s na Amazônia, aplicado à CGH irmã Dorothy. No âmbito financeiro, são raras as informações referentes aos custos de implantação de CGH’s na Amazônia. Assim, foram levantados os custos referentes à implantação da CGH irmã Dorothy e comparados a custos de CGH’s e de geradores a diesel disponíveis na literatura.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After almost 10 years from “The Free Lunch Is Over” article, where the need to parallelize programs started to be a real and mainstream issue, a lot of stuffs did happened: • Processor manufacturers are reaching the physical limits with most of their approaches to boosting CPU performance, and are instead turning to hyperthreading and multicore architectures; • Applications are increasingly need to support concurrency; • Programming languages and systems are increasingly forced to deal well with concurrency. This thesis is an attempt to propose an overview of a paradigm that aims to properly abstract the problem of propagating data changes: Reactive Programming (RP). This paradigm proposes an asynchronous non-blocking approach to concurrency and computations, abstracting from the low-level concurrency mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Se ha analizado el problema de la detección de fugas de CO2 en reservorios naturales utilizados como almacenes de este gas. Los trabajos han sido realizados sobre un área del Campo de Calatrava, Ciudad Real, España, donde a causa de la actividad volcánica remanente se pueden encontrar puntos de emisión de CO2. Se han utilizado imágenes QuickBird y WorldView-2 para la generación de firmas espectrales e índices de vegetación. Estos índices han sido evaluados para obtener los más idóneos para la detección de fugas de CO2. Palabras clave: teledetección, CO2, vegetación, satélite. ABSTRACT The problem of detecting CO2 leaks in natural reservoirs used to store the gas has been analyzed. The works have been done over an area where, because of the residual volcanic activity, CO2 delivery spots can be found. This area is located in Campo de Calatrava, Ciudad Real, Spain. QuickBird and WorldView-2 imagery has been used to generate spectral signatures and vegetation indexes. These indexes have been evaluated in order to obtain the most suitable ones to detect CO2 leaks. Keywords: remote sensing, CO2, vegetation, satellite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper is to describe an intelligent system for the problem of real time road traffic control. The purpose of the system is to help traffic engineers in the selection of the state of traffic control devices on real time, using data recorded by traffic detectors on motorways. The system follows an advanced knowledge-based approach that implements an abstract generic problem solving method, called propose-and-revise, which was proposed in Artificial Intelligence, within the knowledge engineering field, as a standard cognitive structure oriented to solve configuration design problems. The paper presents the knowledge model of such a system together with the strategy of inference and describes how it was applied for the case of the M-40 urban ring for the city of Madrid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El problema del flujo sobre una cavidad abierta ha sido estudiado en profundidad en la literatura, tanto por el interés académico del problema como por sus aplicaciones prácticas en gran variedad de problemas ingenieriles, como puede ser el alojamiento del tren de aterrizaje de aeronaves, o el depósito de agua de aviones contraincendios. Desde hace muchos a˜nos se estudian los distintos tipos de inestabilidades asociadas a este problema: los modos bidimensionales en la capa de cortadura, y los modos tridimensionales en el torbellino de recirculación principal dentro de la cavidad. En esta tesis se presenta un estudio paramétrico completo del límite incompresible del problema, empleando la herramienta de estabilidad lineal conocida como BiGlobal. Esta aproximación permite contemplar la estabilidad global del flujo, y obtener tanto la forma como las características de los modos propios del problema físico, sean estables o inestables. El estudio realizado permite caracterizar con gran detalle todos los modos relevantes, así como la envolvente de estabilidad en el espacio paramétrico del problema incompresible (Mach nulo, variación de Reynolds, espesor de capa límite incidente, relación altura/profundidad de la cavidad, y longitud característica de la perturbación en la dirección transversal). A la luz de los resultados obtenidos se proponen una serie de relaciones entre los parámetros y características de los modos principales, como por ejemplo entre el Reynolds crítico de un modo, y la longitud característica del mismo. Los resultados numéricos se contrastan con una campaña experimental, siendo la principal conclusión de dicha comparación que los modos lineales están presentes en el flujo real saturado, pero que existen diferencias notables en frecuencia entre las predicciones teóricas y los experimentos. Para intentar determinar la naturaleza de dichas diferencias se realiza una simulación numérica directa tridimensional, y se utiliza un algoritmo de DMD (descomposición dinámica de modos) para describir el proceso de saturación. ABSTRACT The problem of the flow over an open cavity has been studied in depth in the literature, both for being an interesting academical problem and due to the multitude of industrial applications, like the landing gear of aircraft, or the water deposit of firefighter airplanes. The different types of instabilities appearing in this flow studied in the literature are two: the two-dimensional shear layer modes, and the three-dimensional modes that appear in the main recirculating vortex inside the cavity. In this thesis a parametric study in the incompressible limit of the problem is presented, using the linear stability analysis known as BiGlobal. This approximation allows to obtain the global stability behaviour of the flow, and to capture both the morphological features and the characteristics of the eigenmodes of the physical problem, whether they are stable or unstable. The study presented here characterizes with great detail all the relevant eigenmodes, as well as the hypersurface of instability on the parameter space of the incompressible problem (Mach equal to zero, and variation of the Reynolds number, the incoming boundary layer thickness, the length to depth aspect ratio of the cavity and the spanwise length of the perturbation). The results allow to construct parametric relations between the characteristics of the leading eigenmodes and the parameters of the problem, like for example the one existing between the critical Reynolds number and its characteristic length. The numerical results presented here are compared with those of an experimental campaign, with the main conclusion of said comparison being that the linear eigenmode are present in the real saturated flow, albeit with some significant differences in the frequencies of the experiments and those predicted by the theory. To try to determine the nature of those differences a three-dimensional direct numerical simulation, analyzed with Dynamic Mode Decomposition algorithm, was used to describe the process of saturation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The equation ∂tu = u∂xx2u − (c − 1)(∂xu)2 is known in literature as a qualitative mathematical model of some biological phenomena. Here this equation is derived as a model of the groundwater flow in a water-absorbing fissurized porous rock; therefore, we refer to this equation as a filtration-absorption equation. A family of self-similar solutions to this equation is constructed. Numerical investigation of the evolution of non-self-similar solutions to the Cauchy problems having compactly supported initial conditions is performed. Numerical experiments indicate that the self-similar solutions obtained represent intermediate asymptotics of a wider class of solutions when the influence of details of the initial conditions disappears but the solution is still far from the ultimate state: identical zero. An open problem caused by the nonuniqueness of the solution of the Cauchy problem is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nesta dissertação apresentamos um método de quantização matemática e conceitualmente rigoroso para o campo escalar livre de interações. Trazemos de início alguns aspéctos importantes da Teoria de Distribuições e colocamos alguns pontos de geometria Lorentziana. O restante do trabalho é dividido em duas partes: na primeira, estudamos equações de onda em variedades Lorentzianas globalmente hiperbólicas e apresentamos o conceito de soluções fundamentais no contexto de equações locais. Em seguida, progressivamente construímos soluções fundamentais para o operador de onda a partir da distribuição de Riesz. Uma vez estabelecida uma solução para a equação de onda em uma vizinhança de um ponto da variedade, tratamos de construir uma solução global a partir da extensão do problema de Cauchy a toda a variedade, donde as soluções fundamentais dão lugar aos operadores de Green a partir da introdução de uma condição de contorno. Na última parte do trabalho, apresentamos um mínimo da Teoria de Categorias e Funtores para utilizar esse formalismo na contrução de um funtor de segunda quantização entre a categoria de variedades Lorentzianas globalmente hiperbólicas e a categoria de redes de álgebras C* satisfazendo os axiomas de Haag-Kastler. Ao fim, retomamos o caso particular do campo escalar quântico livre.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a Cauchy problem for the heat equation, where the temperature field is to be reconstructed from the temperature and heat flux given on a part of the boundary of the solution domain. We employ a Landweber type method proposed in [2], where a sequence of mixed well-posed problems are solved at each iteration step to obtain a stable approximation to the original Cauchy problem. We develop an efficient boundary integral equation method for the numerical solution of these mixed problems, based on the method of Rothe. Numerical examples are presented both with exact and noisy data, showing the efficiency and stability of the proposed procedure and approximations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose – To propose and investigate a stable numerical procedure for the reconstruction of the velocity of a viscous incompressible fluid flow in linear hydrodynamics from knowledge of the velocity and fluid stress force given on a part of the boundary of a bounded domain. Design/methodology/approach – Earlier works have involved the similar problem but for stationary case (time-independent fluid flow). Extending these ideas a procedure is proposed and investigated also for the time-dependent case. Findings – The paper finds a novel variation method for the Cauchy problem. It proves convergence and also proposes a new boundary element method. Research limitations/implications – The fluid flow domain is limited to annular domains; this restriction can be removed undertaking analyses in appropriate weighted spaces to incorporate singularities that can occur on general bounded domains. Future work involves numerical investigations and also to consider Oseen type flow. A challenging problem is to consider non-linear Navier-Stokes equation. Practical implications – Fluid flow problems where data are known only on a part of the boundary occur in a range of engineering situations such as colloidal suspension and swimming of microorganisms. For example, the solution domain can be the region between to spheres where only the outer sphere is accessible for measurements. Originality/value – A novel variational method for the Cauchy problem is proposed which preserves the unsteady Stokes operator, convergence is proved and using recent for the fundamental solution for unsteady Stokes system, a new boundary element method for this system is also proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, three iterative procedures (Landweber-Fridman, conjugate gradient and minimal error methods) for obtaining a stable solution to the Cauchy problem in slow viscous flows are presented and compared. A section is devoted to the numerical investigations of these algorithms. There, we use the boundary element method together with efficient stopping criteria for ceasing the iteration process in order to obtain stable solutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem considered is that of determining the fluid velocity for linear hydrostatics Stokes flow of slow viscous fluids from measured velocity and fluid stress force on a part of the boundary of a bounded domain. A variational conjugate gradient iterative procedure is proposed based on solving a series of mixed well-posed boundary value problems for the Stokes operator and its adjoint. In order to stabilize the Cauchy problem, the iterations are ceased according to an optimal order discrepancy principle stopping criterion. Numerical results obtained using the boundary element method confirm that the procedure produces a convergent and stable numerical solution.