972 resultados para ZrO(2)center dot nH(2)O nanoparticles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystallized boehmite gamma-AlOOH center dot nH(2)O had been synthesized by spray-drying (SD) of a solution of aluminium tri-sec-butoxide peptized by nitric acid. The sub-micronic spherical particles obtained had an average diameter of 500 nm and were built of 100 nm or less platelet-like sub-particles. The average crystallite size calculated from XRD was 1.6 nm following the b axis (i.e. one unit cell) and 3-4 nm perpendicular to b. As a result of the nanometric sizes of crystallites, there was a large surface free for water adsorption and it was found to be n = 1.18 +/- 0.24H(2)O per AlOOH. The SD spheres spontaneously dispersed in water at room temperature and formed stable-over months-suspensions with nanometre-size particles (25-85 nm). Luminescent europium-doped nanocrystallized boehmites AlOOH: Eu (Al0.98Eu0.02OOH center dot nH(2)O) were synthesized the same way by SD and demonstrated the same crystallization properties and morphologies as the undoped powders. It is inferred from the Eu3+ luminescence spectroscopy that partly hydrated europium species are immobilized on the boehmite nanocrystals where they are directly bonded to alpha(OH) groups of the AlOOH surface. The europium coordination is schematically written [Eu3+(OH)(alpha)(H2O)(7-alpha/2)]. The europium-doped boehmite from SD spontaneously dispersed in water: the luminescence spectroscopy proves that most of the Eu3+ ions were detached from the NPs during water dispersion. The AlOOH: Eu nanoparticles were modified by the amine acid asparagine (ASN). The modification aimed to render the NPs compatible for further bio-functionalization. After surface modification, the NPs easily dispersed in water; the luminescence spectra after dispersion prove that the Eu3+ ions were held at the boehmite surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state compounds of general formula LnL(3)center dot nH(2)O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere.On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200 degrees C occurs with the formation of the respective oxide, Tb4O7 and Ln(2)O(3) (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol(-1), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The N-H center dot center dot center dot pi hydrogen bond is an important intermolecular interaction in many biological systems. We have investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet cooled complex of pyrrole with benzene and benzene-d(6) (Pyr center dot Bz, Pyr center dot Bz-d(6)). DFT-D density functional, SCS-MP2 and SCS-CC2 calculations predict a T-shaped and (almost) C(s) symmetric structure with an N-H center dot center dot center dot pi hydrogen bond to the benzene ring. The pyrrole is tipped by omega(S(0)) = +/- 13 degrees relative to the surface normal of Bz. The N center dot center dot center dot ring distance is 3.13 angstrom. In the S(1) excited state, SCS-CC2 calculations predict an increased tipping angle omega(S(1)) = +/- 21 degrees. The IR depletion spectra support the T-shaped geometry: The NH stretch is redshifted by -59 cm(-1), relative to the "free" NH stretch of pyrrole at 3531 cm(-1), indicating a moderately strong N-H center dot center dot center dot pi interaction. The interaction is weaker than in the (Pyr)(2) dimer, where the NH donor shift is -87 cm(-1) [Dauster et al., Phys. Chem. Chem. Phys., 2008, 10, 2827]. The IR C-H stretch frequencies and intensities of the Bz subunit are very similar to those of the acceptor in the (Bz)(2) dimer, confirming that Bz acts as the acceptor. While the S(1) <- S(0) electronic origin of Bz is forbidden and is not observable in the gas-phase, the UV spectrum of Pyr center dot Bz in the same region exhibits a weak 0(0)(0) band that is red-shifted by 58 cm(-1) relative to that of Bz (38 086 cm(-1)). The origin appears due to symmetry-breaking of the p-electron system of Bz by the asymmetric pyrrole NH center dot center dot center dot pi hydrogen bond. This contrasts with (Bz)(2), which does not exhibit a 0(0)(0) band. The Bz moiety in Pyr center dot Bz exhibits a 6a(0)(1) band at 0(0)(0) + 518 cm(-1) that is about 20x more intense than the origin band. The symmetry breaking by the NH center dot center dot center dot pi hydrogen bond splits the degeneracy of the v(6)(e(2g)) vibration, giving rise to 6a' and 6b' sub-bands that are spaced by similar to 6 cm(-1). Both the 0(0)(0) and 6(0)(1) bands of Pyr center dot Bz carry a progression in the low-frequency (10 cm(-1)) excited-state tipping vibration omega', in agreement with the change of the omega tipping angle predicted by SCS-MP2 and SCS-CC2 calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report measurements of the nonlinear (NL) refractive index n(2) of lead-germanium films (LGFs) containing Cu and Cu(2)O nanoparticles (NPs). The thermally managed eclipse Z-scan technique with 150 fs pulses from a laser operating at 800 nm was used. The NL refractive index measured, n(2)=6.3x10(-12) cm(2)/W has electronic origin and the NL absorption coefficient alpha(2) is smaller than 660 cm/GW. The figure of merit n(2)/lambda alpha(2) is enhanced by more than two orders of magnitude in comparison with the result for the LGFs without the copper based NPs. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The local atomic structures around the Zr atom of pure (undoped) ZrO(2) nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO(2) nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr-O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye-Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to the z direction; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZrO(2)-10, 12 and 14 mol% Sc(2)O(3) nanopowders were prepared by using a nitrate-lysine gel-combustion synthesis. These materials were studied by synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy after calcination at different temperatures from 650 to 1200 degrees C, which led to samples with different average crystallite sizes, up to about 100 nm. The results from SXPD and Raman analyses indicate that, depending on Sc(2)O(3) content, the metastable t ''-form of the tetragonal phase or the cubic phase are fully retained at room temperature in nanocrystalline powders, provided an average crystallite sizes lower than similar to 30 nm. By contrast, powders with larger average crystallite sizes exhibit the stable rhombohedral, beta and gamma, phases and do not retain or very partially retain the metastable t '' and cubic ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure and the local atomic order of a series of nanocrystalline ZrO(2)-CaO solid solutions with varying CaO content were studied by synchrotron radiation X-ray powder diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. These samples were synthesized by a pH-controlled nitrate-glycine gel-combustion process. For CaO contents up to 8 mol%, the t' form of the tetragonal phase (c/a > 1) was identified, whereas for 10 and 12 mol% CaO, the t '' form (c/a=1; oxygen anions displaced from their ideal positions in the cubic phase) was detected. Finally, the cubic phase was observed for solid solutions with CaO content of 14 mol% CaO or higher. The t'/t '' and t ''/cubic compositional boundaries were determined to be at 9 (1) and 13 (1) mol% CaO, respectively. The EXAFS study demonstrated that this transition is related to a tetragonal-to-cubic symmetry change of the first oxygen coordination shell around the Zr atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural fibers used in this study were both pre-treated and modified residues from sugarcane bagasse. Polymer of high density polyethylene (HDPE) was employed as matrix in to composites, which were prodUced by mixing high density polyethylene with cellulose (10%) and Cell/ZrO(2)center dot nH(2)O (10%), using an extruder and hydraulic press. Tensile tests showed that the Cell/ZrO(2)center dot nH(2)O (10%)/HDPE composites present better tensile strength than cellulose (10%)/HDPE composites. Cellulose agglomerations were responsible for poor adhesion between fiber and matrix in cellulose (10%)/HDPE composites. HDPF/natural fibers composites showed also lower tensile strength in comparison to the polymer. The increase in Young`s modulus is associated to fibers reinforcement. SEM analysis showed that the cellulose fibers insertion in the matrix Caused all increase of defects, which were reduced When modified cellulose fibers were Used. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A type of ZrO(2)center dot nH(2)O Was synthesized and its Cr(VI) removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The Cr(VI) adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model. The adsorption capacity increased from 61 to 66 mg g(-1) when the temperature was increased from 298 to 338 K. The positive values of both Delta H degrees and Delta S degrees suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G degrees values obtained were negative indicating a spontaneous adsorption process. The effective desorption of Cr(VI) on ZrO(2)center dot nH(2)O could be achieved using distilled water at pH 12. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many industrial advantages of using mechanical multi-oxides mixtures to obtain ceramic parts by electrophoretic deposition (EPD). This is mainly because one could avoid complex chemical synthesis routes to achieve a desirable composition. However, EPD of these suspensions is not an easy task as well since many different surfaces are present, leading to unexpected suspension behavior. The particles surface potentials and interactions can, however, be predicted by an extension of the DLVO theory. Using this theory, one can control the suspension properties and particles distribution. The objective of this work was to apply the colloidal chemistry theories to promote the formation of a heterocoagulation between ZrO(2) and Y(2)O(3) particles in ethanol suspension to achieve a suitable condition for EPD. After identifying a condition where those particles had opposite surface charges and adequate relative sizes, heterocoagulation was observed at operational pH 7.5, generating an organized agglomerate with ZrO(2) particles surrounding Y(2)O(3), with a net zeta potential of -16.6 mV. Since the agglomerates were stable, EPD could be carried out and homogeneous deposits were obtained. The deposited bodies were sintered at 1600 A degrees C for 4 h and partially stabilized ZrO(2) could be obtained without traces of Y(2)O(3) second phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new nitrosyl ruthenium complex [Ru(NH center dot NHq)(terpy)NO](3+) nitric oxide donor was recently developed and due to its excellent vasodilator activity, it has been considered as a potential drug candidate. Drug metabolism is one of the main parameters that should be evaluated in the early drug development, so the biotransformation of this complex by rat hepatic microsomes was investigated. In order to perform the biotransformation study, a simple, sensitive and selective HPLC method was developed and carefully validated. The parameters evaluated in the validation procedure were: linearity, recovery, precision, accuracy, selectivity and stability. Except for the stability study, all the parameters evaluated presented values below the recommended by FDA guidelines. The stability study showed a time-dependent degradation profile. After method validation, the biotransformation study was accomplished and the kinetic parameters were determined. The biotransformation study obeyed the Michaelis-Menten kinetics. The V(max) and K(m) were, respectively, 0.1625 +/- 0.010 mu mol/mg protein/min and 79.97 +/- 11.52 mu M. These results indicate that the nitrosyl complex is metabolized by CYP450. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelial cells are primary targets for pro-atherosclerotic stressors such as oxidized LDL (ox-LDL). The isoflavone genistein, on the other hand, is suggested to prevent a variety of processes underlying atherosclerosis and cardiovascular diseases. By analyzing the proteome of EA(.)hy 926 endothelial cells, here we show, that genistein reverses the ox-LDL-induced changes of the steady-state levels of several proteins involved in atherosclerosis. These alterations caused by genistein are functionally linked to the inhibition of ox-LDL induced apoptosis.