327 resultados para ZANARDI, CARRACCI, ROTATORIA, SEMAFORO, CAVALCAVIA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Five cadinane sesquiterpenes derivatives were isolated by bioassay-guided fractionation from Phomopis cassiae, an endophytic fungus isolated from Cassia spectabilis. The structures of the two diastereoisomeric 3,9,12-trihydroxycalamenenes (1, 2); 3,12-dihydroxycalamenene (3); 3,12-dihydroxycadalene (4) and 3,11,12-trihydroxycadalene (5) were established on the basis of analyses of ID and 2D NMR and HRTOFMS experiments. Antifungal activity of the isolates was evaluated against Cladosporium sphaerospermum and Cladosporium cladosporioides, revealing 5 as the most active compound. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
An analytical approach for the spin stabilized satellite attitude propagation is presented using the non-singular canonical variables to describe the rotational motion. Two sets of variables were introduced for Fukushima in 1994 by a canonical transformation and they are useful when the angle between z-satellite axis of a coordinate system fixed in artificial satellite and the rotational angular momentum vector is zero or when the angle between Z-equatorial axis and rotation angular momentum vector is zero. Analytical solutions for rotational motion equations and torque-free motion are discussed in terms of the elliptic functions and by the application of some simplification to get an approximated solution. These solutions are compared with a numerical solution and the results show a good agreement for many rotation periods. When the mean Hamiltonian associated with the gravity gradient torque is included, an analytical solution is obtained by the application of the successive approximations' method for the satellite in an elliptical orbit. These solutions show that the magnitude of the rotation angular moment is not affected by the gravity gradient torque but this torque causes linear and periodic variations in the angular variables, long and short periodic variations in Z-equatorial component of the rotation angular moment and short periodic variations in x-satellite component of the rotation angular moment. The goal of this analysis is to emphasize the geometrical and physical meaning of the non-singular variables and to validate the approximated analytical solution for the rotational motion without elliptic functions for a non-symmetrical satellite. The analysis can be applied for spin stabilized satellite and in this case the general solution and the approximated solution are coincidence. Then the results can be used in analysis of the space mission of the Brazilian Satellites. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
We present the results of a comparative study on thermally stratified tanks for hot storage. A two-dimensional model is employed. A numerical solution was obtained using the control-volume technique due to Patankar. The two-dimensional model was simplified for the pure conduction case. Results from the two models were compared with each other and with available numerical and experimental results. (C) 1997 Elsevier B.V. Ltd.
Resumo:
Using a canonical formulation, the stability of the rotational motion of artificial satellites is analyzed considering perturbations due to the gravity gradient torque. Here Andoyer's variables are used to describe the rotational motion. One of the approaches that allow the analysis of the stability of Hamiltonian systems needs the reduction of the Hamiltonian to a normal form. Firstly equilibrium points are found. Using generalized coordinates, the Hamiltonian is expanded in the neighborhood of the linearly stable equilibrium points. In a next step a canonical linear transformation is used to diagonalize the matrix associated to the linear part of the system. The quadratic part of the Hamiltonian is normalized. Based in a Lie-Hori algorithm a semi-analytic process for normalization is applied and the Hamiltonian is normalized up to the fourth order. Once the Hamiltonian is normalized up to order four, the analysis of stability of the equilibrium point is performed using the theorem of Kovalev and Savichenko. This semi-analytical approach was applied considering some data sets of hypothetical satellites. For the considered satellites it was observed few cases of stable motion. This work contributes for space missions where the maintenance of spacecraft attitude stability is required.
Resumo:
Two Kalman-filter formulations are presented for the estimation of spacecraft sensor misalignments from inflight data. In the first the sensor misalignments are part of the filter state variable; in the second, which we call HYLIGN, the state vector contains only dynamical variables, but the sensitivities of the filter innovations to the misalignments are calculated within the Kalman filter. This procedure permits the misalignments to be estimated in batch mode as well as a much smaller dimension for the Kalman filter state vector. This results not only in a significantly smaller computational burden but also in a smaller sensitivity of the misalignment estimates to outliers in the data. Numerical simulations of the filter performance are presented.
Resumo:
Heat recovery devices are important in the optimization of thermal systems, since they can be used to reduce thermal losses to the environment. The use of heat pipes in these types of equipment can provide heat recoveries of higher efficiency, since both fluid flows are external and there are less contamination risks between the hot and cold fluids. The objective of this work is to study a heat recovery unit constructed with heat pipes and mainly, to analyze the influence of the inclination of the heat pipes on the performance of the equipment. For this analysis, a heat recovery unit was constructed which possesses 48 finned heat pipes in triangular geometry, the evaporator and condenser being of the same length. This unit was tested in an air-air system simulating a heat recovery process in which heat was supplied to the hot fluid by electrical resistances. The results have shown that there exists an inclination at which the system has a better performance, but for higher inclinations there is no significant increase of the efficiency of the system. This paper also presents the influence of inclination of heat pipes on effectiveness and NTU parameters which are important in heat exchanger design.
Resumo:
The objective of this paper is to present a generalized analytical-numerical model of the internal flow in heat pipes. The model formulation is based on two-dimensional formulation of the energy and momentum equations in the vapour and liquid regions and also in the metallic tube. The numerical solution of the model is obtained by using the descretization scheme LOAD and the SIMPLE numerical code. The flow fields, as well as the pressure fields, for different geometries were obtained and discussed. Copyright © 1996 Elsevier Science Ltd.
Resumo:
High efficiency gas turbine based systems, utility deregulation and more stringent environmental regulations strongly favor the use of natural gas over coal and other solid fuels in new electricity generators. Solid fuels could continue to compete, however, if a low cost gasifier fed by low cost feedstocks can be coupled with a gas turbine system. We examine on-site gasification of coal with other domestic fuels in an indirectly heated gasifier as a strategy to lower the costs of solid fuel systems. The systematics of gaseous pyrolysis yields assembled with the help of thermal measurement data and molecular models suggests blending carbonaceous fuels such as coal, coke or char with oxygenated fuels such as biomass, RDF, MSW, or dried sewage sludge. Such solid fuel blending can, with the help of inexpensive catalysts, achieve an optimum balance of volatiles, heating values and residual char thus reducing the technical demands upon the gasifier. Such simplifications should lower capital and operating costs of the gasifier to the mutual benefit of both solid fuel communities.
Resumo:
Two Kalman-filter formulations are presented for the estimation of spacecraft sensor misalignments from inflight data. In the first the sensor misalignments are part of the filter state variable; in the second the state vector contains only dynamical variables, but the sensitivities of the filter innovations to the misalignments are calculated within the Kalman filter. This procedure permits the misalignments to be estimated in batch mode as well as a much smaller dimension for the Kalman filter state vector. This results not only in a significantly smaller computational burden but also in a smaller sensitivity of the misalignment estimates to outliers in the data. Numerical simulations of the filter performance are presented.
Resumo:
A semi-analytical approach is proposed to study the rotational motion of an artificial satellite under the influence of the torque due to the solar radiation pressure and taking into account the influence of Earth's shadow. The Earth's shadow is introduced in the equations for the rotational motion as a function depending on the longitude of the Sun, on the ecliptic's obliquity and on the orbital parameters of the satellite. By mapping and computing this function, we can get the periods in which the satellite is not illuminated and the torque due to the solar radiation pressure is zero. When the satellite is illuminated, a known analytical solution is used to predict the satellite's attitude. This analytical solution is expressed in terms of Andoyer's variables and depends on the physical and geometrical properties of the satellite and on the direction of the Sun radiation flux. By simulating a hypothetical circular cylindrical type satellite, an example is exhibited and the results agree quite well when compared with a numerical integration. © 1997 COSPAR. Published by Elsevier Science Ltd.
Resumo:
This paper describes how QUEST 1 (QUaternion ESTimator algorithm) influenced Brazilian space research activities. Indeed, we present a short survey paper on researches in attitude determination and propagation in Brazil arising from the influence of the author of QUEST. We show how Brazilian researchers started implementing QUEST, tasting it, and later deriving other applications based on it. Some Brazilian researchers worked out further investigations through direct interaction with the QUEST author, Dr. Malcolm Shuster, addressing attitude alignment and calibration problems. Further related researches show the influence of Dr. Shuster's work on Brazilian space research.
Resumo:
Background. It has been suggested that the study of women who survive life-threatening complications related to pregnancy (maternal near-miss cases) may represent a practical alternative to surveillance of maternal morbidity/mortality since the number of cases is higher and the woman herself is able to provide information on the difficulties she faced and the long-term repercussions of the event. These repercussions, which may include sexual dysfunction, postpartum depression and posttraumatic stress disorder, may persist for prolonged periods of time, affecting women's quality of life and resulting in adverse effects to them and their babies. Objective. The aims of the present study are to create a nationwide network of scientific cooperation to carry out surveillance and estimate the frequency of maternal near-miss cases, to perform a multicenter investigation into the quality of care for women with severe complications of pregnancy, and to carry out a multidimensional evaluation of these women up to six months. Methods/Design. This project has two components: a multicenter, cross-sectional study to be implemented in 27 referral obstetric units in different geographical regions of Brazil, and a concurrent cohort study of multidimensional analysis. Over 12 months, investigators will perform prospective surveillance to identify all maternal complications. The population of the cross-sectional component will consist of all women surviving potentially life-threatening conditions (severe maternal complications) or life-threatening conditions (the maternal near miss criteria) and maternal deaths according to the new WHO definition and criteria. Data analysis will be performed in case subgroups according to the moment of occurrence and determining cause. Frequencies of near-miss and other severe maternal morbidity and the association between organ dysfunction and maternal death will be estimated. A proportion of cases identified in the cross-sectional study will comprise the cohort of women for the multidimensional analysis. Various aspects of the lives of women surviving severe maternal complications will be evaluated 3 and 6 months after the event and compared to a group of women who suffered no severe complications in pregnancy. Previously validated questionnaires will be used in the interviews to assess reproductive function, posttraumatic stress, functional capacity, quality of life, sexual function, postpartum depression and infant development. © 2009 Cecatti et al.
Resumo:
This paper presents a study of a modeling scheme for the spin stabilized satellites attitude, entirely developed in terms of quaternion parametrization. The analysis includes numerical propagation of the rotational motion equation, considering the influence of the following torques: aerodynamic, gravity gradient, residual magnetic, eddy currents and the one due to the Lorentz force. Applications are developed considering the Brazilian Spin Stabilized Satellites SCD1 and SCD2, which are quite appropriated for verification and comparison of the theory with the real data generated and processed by the INPE's Satellite Control Center (SCC). The results show that for SCD1 and SCD2 the influence of the eddy current torque is bigger than the others ones, not only due to the orbit altitude, but also to other specific satellites characteristics. The influence of the torque due to Lorentz force is smaller than the others ones because of the dimension and the electrical charges of the SCD1 and SCD2. In all performed tests the errors remained within the dispersion range specified for the attitude determination system of INPE's SCC. The results show the feasibility of using the quaternion attitude parametrization for modeling the satellite dynamics of spin stabilized satellites.